Learn More
A cluster of 40 serotonergic cells in the rostral part of pedal ganglia of the terrestrial snail Helix lucorum was shown previously to participate in the modulation of withdrawal behavior and to be necessary during the acquisition of aversive withdrawal conditioning in intact snails. Local extracellular stimulation of the serotonergic cells paired with a(More)
The properties of the monosynaptic input from mechanosensory neurons to withdrawal interneurons were examined in Helix lucorum. The instantaneous I-V relation of the excitatory postsynaptic current in withdrawal interneurons was nonlinear, having a plateau region between -40 and -60 mV. On application of the blocker of vertebrate N-methyl-D-aspartate (NMDA)(More)
We show that activation of a single serotonergic cell is sufficient to trigger long-term associative enhancement of synaptic input to the withdrawal interneuron in a simple network consisting of three interconnected identified cells in the nervous system of terrestrial snail Helix. 1,2-bis (2-aminophenoxy) Ethane-N,N,N',N'-tetraacetic acid (BAPTA) injection(More)
The hypothesis that a long-term increase of behavioural responses in snails (over a period of days) might be due to environmental conditioning was examined. Training consisted of delivering electric shocks non-contingently with test stimuli twice per day for 5 days to freely moving snails on a ball floating in water. After training, a significant difference(More)
In the terrestrial snail a direct monosynaptic glutamatergic connection between the primary sensory neuron and a premotor interneuron involved in withdrawal behaviour can be functionally identified using electrophysiological techniques. We investigated the involvement of cannabinoids in regulation of this synaptic contact. The results demonstrate that the(More)
Identified cells of Helix lucorum L. received 20 min exposures to 23, 120, or 200 mT stationary magnetic field (MFs). Resting potentials and input resistances were measured. Controls were instituted for temperature changes and for mechanical and other sources of artifact. Resting potentials did not change with MF exposure. Input resistances decreased(More)
GABA-immunoreactive fibers were observed in the neuropile of each ganglion of Helix lucorum, while GABA-immunoreactive neural somata were found only in the buccal, cerebral, and pedal ganglia. Bath application of 10(-5) M GABA to the preparation "buccal mass-buccal ganglia" elicited a sequence of radula movements characteristic of feeding behavior.(More)
Studies on identified neurons in the common snail were performed to investigate potentiation of EPSP arising after intracellular tetanization of the post-synaptic neuron. These experiments showed that high-frequency intracellular tetanization of a command neuron leads to biphasic long-term increases in the amplitude of synaptic responses to test(More)
Rhythmic activity in two independent structures of the digestive apparatus of Clione limacina--the radula and the hooks--is coordinated by neural networks in the buccal ganglion during feeding behavior. Optical recording of neuron activity in the buccal ganglion, which allows simultaneous recording of large numbers of neurons, showed that the activity of(More)
Long-term facilitation in molluscs is believed to be induced due to purely presynaptic activations. We recorded excitatory postsynaptic potentials (EPSPs) simultaneously from two identified neurones of snail parietal ganglia. We report a non-decrementing facilitation induced by intracellular tetanization with concomitant presynaptic activation. The mean(More)