• Citations Per Year
Learn More
The advent of optogenetics provides a new direction for the field of neuroscience and biotechnology, serving both as a refined investigative tool and as potential cure for many medical conditions via genetic manipulation. Although still in its infancy, recent advances in optogenetics has made it possible to remotely manipulate in vivo cellular functions(More)
INTRODUCTION Cardiovascular diseases such as coronary heart disease often necessitate the surgical repair using conduits. Although autografts still remain the gold standard, the inconvenience of harvesting and/or insufficient availability in patients with atherosclerotic disease has given impetus to look into alternative sources for vascular grafts. AREAS(More)
With greater technological advancements and understanding of pathophysiology, "personalized medicine" has become a more realistic goal. In the field of cancer, personalized medicine is the ultimate objective, as each cancer is unique and each tumor is heterogeneous. For many decades, researchers have relied upon studying the histopathology of tumors in the(More)
In situ endothelialization of cardiovascular implants has emerged in recent years as an attractive means of targeting the persistent problems of thrombosis and intimal hyperplasia. This study aimed to investigate the efficacy of immobilizing anti-CD34 antibodies onto a POSS-PCU nanocomposite polymer surface to sequester endothelial progenitor cells (EPCs)(More)
The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative(More)
Vascularisation is often deemed the holy grail of tissue engineering because it is one of the key preconditions that determine the in vivo viability of tissue constructs. Given that a well-developed vascular network allows greater complexity in tissue design and helps regulate tissue metabolism, it appears that the overall outcome of engineered tissue(More)
  • 1