Learn More
The etiology and pathophysiology of schizophrenia remain unknown. A parallel transcriptomics, proteomics and metabolomics approach was employed on human brain tissue to explore the molecular disease signatures. Almost half the altered proteins identified by proteomics were associated with mitochondrial function and oxidative stress responses. This was(More)
The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the(More)
Two large-scale phenotyping efforts, the European Mouse Disease Clinic (EUMODIC) and the Wellcome Trust Sanger Institute Mouse Genetics Project (SANGER-MGP), started during the late 2000s with the aim to deliver a comprehensive assessment of phenotypes or to screen for robust indicators of diseases in mouse mutants. They both took advantage of available(More)
The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline(More)
In quantitative proteomics, the false discovery rate (FDR) can be defined as the number of false positives within statistically significant changes in expression. False positives accumulate during the simultaneous testing of expression changes across hundreds or thousands of protein or peptide species when univariate tests such as the Student's t test are(More)
The lack of reproducibility with animal phenotyping experiments is a growing concern among the biomedical community. One contributing factor is the inadequate description of statistical analysis methods that prevents researchers from replicating results even when the original data are provided. Here we present PhenStat--a freely available R package that(More)
Circadian rhythms are essential to health. Their disruption is associated with metabolic diseases in experimental animals and man. Local metabolic rhythms represent an output of tissue-based circadian clocks. Attempts to define how local metabolism is temporally coordinated have focused on gene expression by defining extensive and divergent "circadian(More)
Two-dimensional gel electrophoresis (2-D GE) is a key tool for comparative proteomics research. With its ability to separate complex protein mixtures with high resolution, 2-D GE is a technique commonly employed for protein profiling studies. Significant improvements have been made in 2-D GE technology with the development of two-dimensional fluorescence(More)
The central circadian pacemaker of the suprachiasmatic nucleus (SCN) is characterized as a series of transcriptional/posttranslational feedback loops. How this molecular mechanism coordinates daily rhythms in the SCN and hence the organism is poorly understood. We conducted the first systematic exploration of the "circadian intracellular proteome" of the(More)
Two-dimensional difference gel electrophoresis (DIGE) is a tool for measuring changes in protein expression between samples involving pre-electrophoretic labeling with cyanine dyes. Here we assess a common method to analyze DIGE data using the DeCyder software system. Experimental error was studied by a series of same sample comparisons. Aliquots of sample(More)