Natascha Bushati

Learn More
MicroRNAs are small noncoding RNAs that serve as posttranscriptional regulators of gene expression in higher eukaryotes. Their widespread and important role in animals is highlighted by recent estimates that 20%-30% of all genes are microRNA targets. Here, we report that a large set of genes involved in basic cellular processes avoid microRNA regulation due(More)
During oogenesis, female animals load their eggs with messenger RNAs (mRNAs) that will be translated to produce new proteins in the developing embryo. Some of these maternally provided mRNAs are stable and continue to contribute to development long after the onset of transcription of the embryonic (zygotic) genome. However, a subset of maternal mRNAs are(More)
microRNAs (miRNAs) are small noncoding RNAs that play important roles in posttranscriptional gene regulation. In animal cells, miRNAs regulate their targets by translational inhibition and mRNA destabilization. Here, we review recent work in animal models that provide insight into the diverse roles of miRNAs in vivo.
Drosophila neuroblasts and ovarian stem cells are well characterized models for stem cell biology. In both cell types, one daughter cell self-renews continuously while the other undergoes a limited number of divisions, stops to proliferate mitotically and differentiates. Whereas neuroblasts segregate the Trim-NHL (tripartite motif and Ncl-1, HT2A and Lin-41(More)
MicroRNAs (miRNAs) are approximately 22-nucleotide RNAs that are processed from characteristic precursor hairpins and pair to sites in messages of protein-coding genes to direct post-transcriptional repression. Here, we report that the miRNA iab-4 locus in the Drosophila Hox cluster is transcribed convergently from both DNA strands, giving rise to two(More)
microRNAs (miRNAs) act as post-transcriptional regulators of gene expression in diverse cellular and developmental processes. Many miRNAs are expressed specifically in the central nervous system, where they have roles in differentiation, neuronal survival, and potentially also in plasticity and learning. The absence of miRNAs in a variety of specific(More)
miR-263a/b are members of a conserved family of microRNAs that are expressed in peripheral sense organs across the animal kingdom. Here we present evidence that miR-263a and miR-263b play a role in protecting Drosophila mechanosensory bristles from apoptosis by down-regulating the pro-apoptotic gene head involution defective. Both microRNAs are expressed in(More)
A series of vectors has been designed to enhance the versatility of targeted homologous recombination. Recombinase-mediated cassette exchange permits sequential targeting at any locus and improves flexibility in making user-defined mutations. Application of RMCE to delete an intronic microRNA gene is described.
The complexity of gene expression data generated from microarrays and high-throughput sequencing make their analysis challenging. One goal of these analyses is to define sets of co-regulated genes and identify patterns of gene expression. To date, however, there is a lack of easily implemented methods that allow an investigator to visualize and interact(More)
Many aspects of social behavior are controlled by sex-specific pheromones. Gender-appropriate production of the sexually dimorphic transcription factors doublesex and fruitless controls sexual differentiation and sexual behavior. miR-124 mutant males exhibited increased male-male courtship and reduced reproductive success with females. Females showed a(More)