Natasa Kovacevic

Learn More
Although there is growing interest in finding mouse models of human disease, no technique for quickly and quantitatively determining anatomical mutants currently exists. Magnetic resonance imaging (MRI) is ideally suited to probe fine structures in mice. This technology is three-dimensional, non-destructive and rapid compared to histopathology; hence MRI(More)
As the brain matures, its responses become optimized. Behavioral measures show this through improved accuracy and decreased trial-to-trial variability. The question remains whether the supporting brain dynamics show a similar decrease in variability. We examined the relation between variability in single trial evoked electrical activity of the brain(More)
Functional magnetic resonance imaging (fMRI) research often attributes blood oxygen level-dependent (BOLD) signal variance to measurement-related confounds. However, what is typically considered "noise" variance in data may be a vital feature of brain function. We examined fMRI signal variability during fixation baseline periods, and then compared SD- and(More)
New work suggests that blood oxygen level-dependent (BOLD) signal variability can be a much more powerful index of human age than mean activation, and that older brains are actually less variable than younger brains. However, little is known of how BOLD variability and task performance may relate. In the current study, we examined BOLD variability in(More)
We explored the effects of aging on 2 large-scale brain networks, the default mode network (DMN) and the task-positive network (TPN). During functional magnetic resonance imaging scanning, young and older participants carried out 4 visual tasks: detection, perceptual matching, attentional cueing, and working memory. Accuracy of performance was roughly(More)
A new protocol is introduced for brain extraction and automatic tissue segmentation of MR images. For the brain extraction algorithm, proton density and T2-weighted images are used to generate a brain mask encompassing the full intracranial cavity. Segmentation of brain tissues into gray matter (GM), white matter (WM), and cerebral spinal fluid (CSF) is(More)
OBJECTIVE To assess the relationship between regional brain volume changes and traumatic brain injury (TBI) severity in patients with and without focal lesions. METHODS Sixty-nine chronic-phase TBI patients spanning the full range of severity were recruited from consecutive hospital admissions. Patients received high-resolution structural MRI a minimum of(More)
Brain development carries with it a large number of structural changes at the local level which impact on the functional interactions of distributed neuronal networks for perceptual processing. Such changes enhance information processing capacity, which can be indexed by estimation of neural signal complexity. Here, we show that during development, EEG(More)
Recent theoretical and empirical work has focused on the variability of network dynamics in maturation. Such variability seems to reflect the spontaneous formation and dissolution of different functional networks. We sought to extend these observations into healthy aging. Two different data sets, one EEG (total n = 48, ages 18-72) and one(More)
Structural MR imaging has become essential to the evaluation of regional brain changes in both healthy aging and disease-related processes. Several methods have been developed to measure structure size and regional brain volumes, but many of these methods involve substantial manual tracing and/or landmark identification. We present a new technique,(More)