Nataliya Trubacheeva

Learn More
Alloplasmic lines combining alien nuclear and cytoplasmic genomes are convenient models for studying the mechanisms of nuclear-cytoplasmic compatibility/incompatibility. In the present study, we have investigated the correlation between the characters and state of mitochondrial (mt) and chloroplast (cp) DNA regions in alloplasmic recombinant common wheat(More)
The states of 18S/5S mitochondrial (mt) repeat and some chloroplast (cp) DNA regions have been investigated in alloplasmic lines of common wheat carrying cytoplasm of the barley species Hordeum marinum subsp. gussoneanum Hudson and H. vulgare L. and in the progenies of the reciprocal hybrids between Triticum aestivum L. and Secale cereale L. The(More)
The chromosome composition of the blue-grain line i:S29Ba of the cultivar Saratovskaya 29 was identified by cytological, GISH, and microsatellite analyses and C-banding. It was found that common wheat chromosome 4B of the cultivar Saratovskaya 29 was substituted with the Agropyron elongatum Host. chromosome carrying the gene for blue grain (s:S294Ag(4B))(More)
The problems of fertility restoration in the progeny of barley-wheat hybrids (H. vulgare × T. aestivum) are explained by incompatibility between the cytoplasm of cultivated barley and the nuclear genome of common wheat. Appropriate models for studying these problems are alloplasmic lines that combine the cytoplasm of barley and the nuclear genome of wheat.(More)
With the use of allele-specific primers developed for the VRN1 loci, the allelic diversity of the VRN-A1, VRN-B1, and VRN-D1 genes was studied in 148 spring common wheat cultivars cultivated under the conditions of western Siberia. It was demonstrated that modern Western Siberian cultivars have the VRN-A1a allele, which is widely distributed in the world(More)
Androgenic ability was studied in anther cultures of euplasmic lines of common wheat and alloplasmic recombinant lines (H. vulgare)–T. aestivum with 1RS.1BL and 7DL-7Ai translocations. The ability to produce androgenic structures and plantlet regeneration are suppressed in lines carrying both translocations. Alloplasmic recombinant lines (H. vulgare)–T.(More)
Identification of the chromosomal composition of common wheat lines with rye chromosomes was carried out using genomic in situ hybridization and 1RS- and 5P-specific PCR markers. It was demonstrated that wheat chromosomes 5A or 5D were substituted by rye chromosome 5R in the wheat-rye lines. It was established that one of the lines with complex disease(More)
Ditelosomic (Dt) 7HLmar(7D) and monotelosomic (Mt) 7HLmar(7A) and 7HLmar(7B) wheat–barley substitution lines were developed by crossing monosomic 7A, 7B and 7D lines of common wheat cv. Saratovskaya 29 with disomic wheat–barley addition lines (2n = 44) that carry telocentric chromosomes 7HLmar from Hordeum marinum ssp. gussoneanum 4×. Genomic in situ(More)
  • 1