Learn More
Basic fibroblast growth factor (FGF-2) is up-regulated in response to a nerve lesion and promotes axonal regeneration by activation of the tyrosine kinase receptor fibroblast growth factor receptor 1 (FGFR1). To determine the effects of elevated FGFR1 levels on neurite outgrowth, overexpression was combined with lysosomal inhibition of receptor degradation.(More)
Fibroblast growth factors (FGFs) promote axon growth during development and regeneration of the nervous system. Among the four types of FGF receptors (FGFRs), FGFR1 is expressed in adult sensory neurons of dorsal root ganglia (DRG), and overexpression of FGFR1 promotes FGF-2-induced elongative axon growth in vitro. Ligand-induced activation of FGFR1 is(More)
BACKGROUND Lipocalin-2 (Lcn-2) is expressed in human neutrophils and epithelial cells, particularly in the presence of inflammation or cancer. It was shown to be highly expressed in various human cancers. Increased protein levels were associated with decreased survival of patients with breast or gastric cancer. The main focus of this work was to analyze the(More)
Fibroblast growth factors (FGFs) act as trophic factors during development and regeneration of the nervous system. FGFs mediate their responses by activation of four types of FGF receptors (FGFR1-4). FGFR1 is expressed in adult sensory neurons of dorsal root ganglia (DRG), and overexpression of FGFR1 enhances FGF-2-induced elongative axon growth in vitro.(More)
Fibroblast growth factors (FGFs) play a prominent role in axonal growth during development and repair. Treatment with FGF-2 or overexpression of FGF receptors promotes peripheral axon regeneration mainly by activation of extracellular signal-regulated kinase (ERK). The Ras/Raf/ERK pathway is under the control of Sprouty proteins acting as negative feedback(More)
Lipocalin-2 (Lcn2) expression contributes to ischemia and reperfusion injury (IRI) by enhancing pro-inflammatory responses. The aim of this work was to elucidate the regulation of Lcn2 during hypoxia and its effects on the expression of key chemokines and adhesion molecules. Lcn2 wt and Lcn2(-/-) mice were used in a heterotopic heart transplantation model.(More)
Sprouty proteins act as negative feedback inhibitors of fibroblast growth factor (FGF) signaling. FGFs belong to the neurotrophic factors and are involved in axonal growth during development and repair. We investigated the expression of Sprouty isoforms in hippocampal neurons as well as the regulation of Sprouty2 and -4 during development and their role in(More)
Regeneration of sensory neurons is limited in response to lesion of their central axons when compared to lesion of their peripheral axons. To identify transcriptional changes underlying this differential regenerative response between dorsal root and spinal nerve axons, the L5 dorsal root ganglion (DRG) of adult rats was investigated three days after(More)
  • 1