Learn More
The transcriptional co-activator PGC-1alpha regulates functional plasticity in adipose tissue by linking sympathetic input to the transcriptional program of adaptive thermogenesis. We report here a novel truncated form of PGC-1alpha (NT-PGC-1alpha) produced by alternative 3' splicing that introduces an in-frame stop codon into PGC-1alpha mRNA. The expressed(More)
Gastric bypass surgery efficiently and lastingly reduces excess body weight and reverses type 2 diabetes in obese patients. Although increased energy expenditure may also play a role, decreased energy intake is thought to be the main reason for weight loss, but the mechanisms involved are poorly understood. Therefore, the aim of this study was to(More)
Powerful biological mechanisms evolved to defend adequate nutrient supply and optimal levels of body weight/adiposity. Low levels of leptin indicating food deprivation and depleted fat stores have been identified as the strongest signals to induce adaptive biological actions such as increased energy intake and reduced energy expenditure. In concert with(More)
Given the mounting evidence for involvement of delta opioid receptors in the tolerance and physical dependence of mu opioid receptor agonists, we have investigated the possible physical interaction between mu and delta opioid receptors by using bivalent ligands. Based on reports of suppression of antinociceptive tolerance by the delta antagonist naltrindole(More)
A changing environment and lifestyle on the background of evolutionary engraved and perinatally imprinted physiological response patterns is the foremost explanation for the current obesity epidemic. However, it is not clear what the mechanisms are by which the modern environment overrides the physiological controls of appetite and homeostatic body-weight(More)
Given the unabated obesity problem, there is increasing appreciation of expressions like "my eyes are bigger than my stomach," and recent studies in rodents and humans suggest that dysregulated brain reward pathways may be contributing not only to drug addiction but also to increased intake of palatable foods and ultimately obesity. After describing recent(More)
AIMS/HYPOTHESIS High fat diet (HFD)-induced insulin resistance (IR) is partially characterized by reduced skeletal muscle mitochondrial function and peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α) expression. Our previous study showed that a high dose of the bioflavonoid quercetin exacerbated HFD-induced IR; yet, others have(More)
Dietary methionine restriction (MR) is a mimetic of chronic dietary restriction (DR) in the sense that MR increases rodent longevity, but without food restriction. We report here that MR also persistently increases total energy expenditure (EE) and limits fat deposition despite increasing weight-specific food consumption. In Fischer 344 (F344) rats(More)
Treatment of pain with opioids is limited by their potential abuse liability. In an effort to develop analgesics without this side effect, a series of bivalent ligands containing a mu-opioid receptor agonist pharmacophore connected to a delta-opioid receptor antagonist pharmacophore through variable-length spacers (16-21 atoms) was synthesized. Members of(More)
Dietary methionine restriction (MR) limits fat deposition and decreases plasma leptin, while increasing food consumption, total energy expenditure (EE), plasma adiponectin, and expression of uncoupling protein 1 (UCP1) in brown and white adipose tissue (BAT and WAT). beta-adrenergic receptors (beta-AR) serve as conduits for sympathetic input to adipose(More)