Natalie J. Nannas

Learn More
The length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to micro-tubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces(More)
The spindle checkpoint ensures that newly born cells receive one copy of each chromosome by preventing chromosomes from segregating until they are all correctly attached to the spindle. The checkpoint monitors tension to distinguish between correctly aligned chromosomes and those with both sisters attached to the same spindle pole. Tension arises when(More)
The classic maize mutant divergent spindle-1 (dv1) causes failures in meiotic spindle assembly and a decrease in pollen viability. By analyzing two independent dv1 alleles we demonstrate that this phenotype is caused by mutations in a member of the kinesin-14A subfamily, a class of C-terminal, minus-end directed microtubule motors. Further analysis(More)
O rganisms must faithfully segregate their chromosomes during cell division; mistakes in this process can be costly and even fatal to the organism (1, 2). During mito-sis, replicated chromosomes attach to the spindle, a dynamic system of micro-tubules organized around two poles. Chromosomes attach to the spindle via kinetochores, structures that form on(More)
  • 1