Learn More
The CD1 family is a large cluster of non-polymorphic, major histocompatibility complex (MHC) class-I-like molecules that bind distinct lipid-based antigens that are recognized by T cells. The most studied group of T cells that interact with lipid antigens are natural killer T (NKT) cells, which characteristically express a semi-invariant T-cell receptor(More)
Although HLA class I alleles can bind epitopes up to 14 amino acids in length, little is known about the immunogenicity or the responding T-cell repertoire against such determinants. Here, we describe an HLA-B*3508-restricted cytotoxic T lymphocyte response to a 13-mer viral epitope (LPEPLPQGQLTAY). The rigid, centrally bulged epitope generated a biased(More)
Unusually long major histocompatibility complex (MHC) class I-restricted epitopes are important in immunity, but their 'bulged' conformation represents a potential obstacle to alphabeta T cell receptor (TCR)-MHC class I docking. To elucidate how such recognition is achieved while still preserving MHC restriction, we have determined here the structure of a(More)
The energetic bases of T cell recognition are unclear. Here, we studied the 'energetic landscape' of peptide-major histocompatibility complex (pMHC) recognition by an immunodominant alphabeta T cell receptor (TCR). We quantified and evaluated the effect of natural and systematic substitutions in the complementarity-determining region (CDR) loops on ligand(More)
The risk of celiac disease is strongly associated with human leukocyte antigen (HLA) DQ2 and to a lesser extent with HLA DQ8. Although the pathogenesis of HLA-DQ2-mediated celiac disease is established, the underlying basis for HLA-DQ8-mediated celiac disease remains unclear. We showed that T helper 1 (Th1) responses in HLA-DQ8-associated celiac pathology(More)
Natural killer T cells expressing 'invariant' T cell receptor alpha-chains (TCRalpha chains) containing variable (V) and joining (J) region V(alpha)14-J(alpha)18 (V(alpha)14i) rearrangements recognize both endogenous and microbial glycolipids in the context of CD1d. How cells expressing an invariant TCRalpha chain and a restricted set of TCRbeta chains(More)
Although it has been established how CD1 binds a variety of lipid antigens (Ag), data are only now emerging that show how alphabeta T cell receptors (TCRs) interact with CD1-Ag. Using the structure of the human semiinvariant NKT TCR-CD1d-alpha-galactosylceramide (alpha-GalCer) complex as a guide, we undertook an alanine scanning mutagenesis approach to(More)
Plasticity of the T cell receptor (TCR) is a hallmark of major histocompatibility complex (MHC)-restricted T cell recognition. However, it is unclear whether interactions of TCR and peptide-MHC class I (pMHCI) always conform to this paradigm. Here we describe the structure of a TCR, ELS4, in its non-ligand-bound form and in complex with a prominent 'bulged'(More)
The three-dimensional structure of the haemagglutinin-neuraminidase (HN) from a human parainfluenza virus is described at ca 2.0 A resolution, both in native form and in complex with three substrate analogues. In support of earlier work on the structure of the homologous protein from the avian pathogen Newcastle disease virus (NDV), we observe a dimer of(More)
Little is known regarding the basis for selection of the semi-invariant alphabeta T cell receptor (TCR) expressed by natural killer T (NKT) cells or how this mediates recognition of CD1d-glycolipid complexes. We have determined the structures of two human NKT TCRs that differ in their CDR3beta composition and length. Both TCRs contain a conserved,(More)