Natalia Prevarskaya

Learn More
In most cases, metastasis, not the primary tumour per se, is the main cause of mortality in cancer patients. In order to effectively escape the tumour, enter the circulation and establish secondary growth in distant organs cancer cells must develop an enhanced propensity to migrate. The ubiquitous second messenger Ca2+ is a crucial regulator of cell(More)
Accumulating data point to K+ channels as relevant players in controlling cell cycle progression and proliferation of human cancer cells, including prostate cancer (PCa) cells. However, the mechanism(s) by which K+ channels control PCa cell proliferation remain illusive. In this study, using the techniques of molecular biology, biochemistry,(More)
TRPM8 (melastatine-related transient receptor potential member 8), a member of the transient receptor potential (TRP) superfamily of cation channels, has been shown to be a calcium-channel protein. TRPM8 mRNA has also been shown to be overexpressed in prostate cancer and is considered to play an important role in prostate physiology. This study was designed(More)
The progression of cells from a normal differentiated state in which rates of proliferation and apoptosis are balanced to a tumorigenic and metastatic state involves the accumulation of mutations in multiple key signalling proteins and the evolution and clonal selection of more aggressive cell phenotypes. These events are associated with changes in the(More)
Recent cloning of a cold/menthol-sensitive TRPM8 channel (transient receptor potential melastatine family member 8) from rodent sensory neurons has provided the molecular basis for the cold sensation. Surprisingly, the human orthologue of rodent TRPM8 also appears to be strongly expressed in the prostate and in the prostate cancer-derived epithelial cell(More)
Plasma membrane (PM) ion channels contribute to virtually all basic cellular processes and are also involved in the malignant phenotype of cancer cells. Here, we review the role of ion channels in cancer in the context of their involvement in the defined hallmarks of cancer: 1) self-sufficiency in growth signals, 2) insensitivity to antigrowth signals, 3)(More)
In recent years, the transient receptor potential melastatin member 8 (TRPM8) channel has emerged as a promising prognostic marker and putative therapeutic target in prostate cancer (PCa). However, the mechanisms of prostate-specific regulation and functional evolution of TRPM8 during PCa progression remain unclear. Here we show, for the first time to our(More)
The transient receptor potential channel, subfamily V, member 6 (TRPV6), is strongly expressed in advanced prostate cancer and significantly correlates with the Gleason >7 grading, being undetectable in healthy and benign prostate tissues. However, the role of TRPV6 as a highly Ca2+-selective channel in prostate carcinogenesis remains poorly understood.(More)
Although human pannexins (PanX) are homologous to gap junction molecules, their physiological function in vertebrates remains poorly understood. Our results demonstrate that overexpression of PanX1 results in the formation of Ca(2+)-permeable gap junction channels between adjacent cells, thus, allowing direct intercellular Ca(2+) diffusion and facilitating(More)
The molecular nature of calcium (Ca2+)-dependent mechanisms and the ion channels having a major role in the apoptosis of cancer cells remain a subject of debate. Here, we show that the recently identified Orai1 protein represents the major molecular component of endogenous store-operated Ca2+ entry (SOCE) in human prostate cancer (PCa) cells, and(More)