Natalia Nekhotiaeva

Learn More
Gene function studies in bacteria lag behind progress in genome sequencing, in part because current reverse genetics technology based on genome disruption does not allow subtle control of gene expression for all genes in a range of species. Essential genes and clustered regions are particularly problematic. Antisense technology offers an attractive(More)
Antisense agents that inhibit genes at the mRNA level are attractive tools for genome-wide studies and drug target validation. The approach may be particularly well suited to studies of bacteria that are difficult to manipulate with standard genetic tools. Antisense peptide nucleic acids (PNA) with attached carrier peptides can inhibit gene expression in(More)
Antimicrobial drug action is limited by both microbial and host cell membranes. Microbes stringently exclude the entry of most drugs, and mammalian membranes limit drug distribution and access to intracellular pathogens. Recently, cell-penetrating peptides (CPPs) have been developed as carriers to improve mammalian cell uptake. Given that CPPs are cationic(More)
BACKGROUND The few available distinct classes of antimicrobials limits the scope for single and combination drug treatment of resistant infections. OBJECTIVE To evaluate antimicrobial effectiveness from combinations of protein-specific drugs and mRNA-specific antisense inhibitors. METHODS Interactions between conventional antimicrobial drugs and(More)
Stringent microbial cell barriers limit the application of many substances in research and therapeutics. Carrier peptides that penetrate or translocate across cell membranes may help overcome this problem. To assess peptide-mediated delivery into two yeast and three bacterial species, a range of cell penetrating and signal peptide sequences were fused to(More)
Microsomal prostaglandin E synthase-1 (mPGES-1) inhibition has been suggested as an alternative to cyclooxygenase (COX) inhibition in the treatment of pain and inflammation. We characterized a selective inhibitor of mPGES-1 activity (compound III) and studied its impact on the prostanoid profile in various models of inflammation. Compound III is a(More)
Microsomal prostaglandin E(2) synthase-1 (MPGES1) catalyzes the formation of prostaglandin E(2) from the endoperoxide prostaglandin H(2). MPGES1 expression is induced in inflammatory diseases, and this enzyme is regarded as a potential drug target. To aid in the drug discovery effort, a simple method for determination of inhibition mechanism and potency(More)
Antibiotics are widely useful in medicine, agriculture, and industrial fermentations. However, increasing problems with resistant strains call for restrained use and alternative strategies. Antisense peptide nucleic acids (PNAs) show potent bactericidal effects when targeted against the essential Escherichia coli acpP gene. Aside from attractive(More)
Oligopyrimidine*oligopurine sequences with potential to form intramolecular triple helix structures (H-DNA) have been found mainly in high eukaryote genomes. However, the natural occurrence and function of H-DNA remains elusive largely because we lack appropriate reagents to demonstrate the formation of these structures in cells. We examined whether a(More)
Microorganisms possess stringent cell membranes which limit the cellular uptake of antimicrobials. One strategy to overcome these barriers is to attach drugs or research reagents to carrier peptides that enter cells by passive permeation or active uptake. Here the short endocytosis signal peptide NPFSD was found to efficiently deliver both FITC and GFP into(More)