Natalia Martinez Soria

Learn More
The chromosomal translocation t(8;21) is associated with 10–15% of all cases of acute myeloid leukaemia (AML). The resultant fusion protein AML1/MTG8 interferes with haematopoietic gene expression and is an important regulator of leukaemogenesis. We studied the effects of small interfering RNA (siRNA)-mediated AML1/MTG8 depletion on global gene expression(More)
MLL/AF4 and AML/MTG8 represent two leukemic fusion genes, which are most frequently found in infant acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), respectively. We examined the influence of MLL/AF4 and AML1/MTG8 fusion genes on the expression of TERT coding for the telomerase protein subunit, and subsequently telomerase activity in(More)
1 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297. 2 Esquela-Kerscher A, Slack FJ. OncomirsFmicroRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269. 3 He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833. 4(More)
Acute myeloid leukemia (AML) is a heterogeneous disease caused by mutations in transcriptional regulator genes, but how different mutant regulators shape the chromatin landscape is unclear. Here, we compared the transcriptional networks of two types of AML with chromosomal translocations of the RUNX1 locus that fuse the RUNX1 DNA-binding domain to different(More)
  • 1