Natalia G. Fedtsova

Learn More
The mammalian POU-domain factor Brn-3.0 (Brn-3, Brn-3a) is a member of the POU-IV class of transcription factors which resemble the C. elegans factor unc-86 in structure, DNA-binding properties and expression in subsets of sensory neurons. Using specific antisera, we have explored the expression of Brn-3.0 in the early development of the mouse nervous(More)
The POU-IV or Brn-3 class of transcription factors exhibit conserved structure, DNA-binding properties, and expression in specific subclasses of neurons across widely diverged species. In the mouse CNS, Brn-3.0 expression characterizes specific neurons from neurogenesis through the life of the cell. This irreversible activation of expression suggests(More)
Brn3a/Brn-3.0 is a POU-domain transcription factor expressed in primary sensory neurons of the cranial and dorsal root ganglia and in specific neurons in the caudal CNS. Mice lacking Brn3a undergo extensive sensory neural death late in gestation and die at birth. To further examine Brn3a expression and the abnormalities that accompany its absence, we(More)
Brn3a is a POU-domain transcription factor expressed in peripheral sensory neurons and in specific interneurons of the caudal CNS. Sensory expression of Brn3a is regulated by a specific upstream enhancer, the activity of which is greatly increased in Brn3a knockout mice, implying that Brn3a negatively regulates its own expression. Brn3a binds to highly(More)
Rathke's pouch, the epithelial primordium of the anterior pituitary, differentiates in close topographical and functional association with the ventral diencephalon. It is still not known whether the ventral diencephalon acts as the initial inducer of pituitary development. The roles of the adjacent mesenchyme and notochord, two other tissues located in(More)
Mice lacking the POU-domain transcription factor Brn3a exhibit marked defects in sensory axon growth and abnormal sensory apoptosis. We have determined the regulatory targets of Brn3a in the developing trigeminal ganglion using microarray analysis of Brn3a mutant mice. These results show that Brn3 mediates the coordinated expression of neurotransmitter(More)
The circadian clock controls many physiological parameters including immune response to infectious agents, which is mediated by activation of the transcription factor NF-κB. It is widely accepted that circadian regulation is based on periodic changes in gene expression that are triggered by transcriptional activity of the CLOCK/BMAL1 complex. Through the(More)
The Brn-3 class of POU-domain transcription factors includes three genes in mammals which have key roles in the development of specific groups of sensory neurons. Here, we have identified three avian genes which correspond to the murine genes Brn-3.0, Brn-3.1, and Brn-3.2. Using an in situ hybridization probe generic for this gene class, the earliest(More)
The vertebrate midbrain consists of dorsal and ventral domains, the tectum and tegmentum, which execute remarkably different developmental programs. Tectal development is characterized by radial migration of differentiating neurons to form a laminar structure, while the tegmentum generates functionally diverse nuclei at characteristic positions along the(More)
The rostral part of the dorsal midbrain, known as the superior colliculus in mammals or the optic tectum in birds, receives a substantial retinal input and plays a diverse and important role in sensorimotor integration. However, little is known about the development of specific subtypes of neurons in the tectum, particularly those which contribute(More)