Natalia Berloff

Learn More
The Gross-Pitaevskii (GP) equation admits a two-dimensional solitary wave solution representing two mutually self-propelled, anti-parallel straight line vortices. The complete sequence of such solitary wave solutions has been computed by Jones and Roberts (J. Phys. A, 15, 2599, 1982). These solutions are unstable with respect to three-dimensional(More)
Injection and decay of particles in an inhomogeneous quantum condensate can significantly change its behavior. We model trapped, pumped, decaying condensates by a complex Gross-Pitaevskii equation and analyze the density and currents in the steady state. With homogeneous pumping, rotationally symmetric solutions are unstable. Stability may be restored by a(More)
Semiconductor microcavities are used to support freely flowing polariton quantum liquids allowing the direct observation and optical manipulation of macroscopic quantum states. Incoherent optical excitation at a point produces radially expanding condensate clouds within the planar geometry. By using arbitrary configurations of multiple pump spots, we(More)
The stability of the axisymmetric solitary waves of the Gross-Pitaevskii (GP) equation is investigated. The Implicitly Restarted Arnoldi Method for banded matrices with shift-invert was used to solve the linearised spectral stability problem. The rarefaction solitary waves on the upper branch of the Jones-Roberts dispersion curve are shown to be unstable to(More)
A gas of magnons in magnetic films differs from all other known systems demonstrating Bose-Einstein condensation (BEC), since it possesses two energetically degenerate lowest-energy quantum states with non-zero wave vectors ±k(BEC). Therefore, BEC in this system results in a spontaneously formed two-component Bose-Einstein condensate described by a linear(More)
Quasiparticles in semiconductors—such as microcavity polaritons—can form condensates in which the steady-state density profile is set by the balance of pumping and decay. By taking account of the polarization degree of freedom for a polariton condensate, and considering the effects of an applied magnetic field, we theoretically discuss the interplay between(More)
Macroscopic quantum states can be easily created and manipulated within semiconductor microcavity chips using exciton-photon quasiparticles called polaritons. Besides being a new platform for technology, polaritons have proven to be ideal systems to study out-of-equilibrium condensates. Here we harness the photonic component of such a semiconductor quantum(More)