Natalia A. Smolina

Learn More
Three well-known representatives of the cyclodextrin family were completely characterized by molecular hydrodynamics methods in three different solvents. For the first time the possibility of an estimation of velocity sedimentation coefficients s between 0.15 and 0.5 S by the numerical solution of the Lamm equation is shown. Comparison of the experimental(More)
Mutations in the lamin A/C gene (LMNA) lead to severe disorders collectively called laminopathies. The mechanisms by which lamin mutations cause the diseases are not clear. Since the mesenchymal lineages, adipose tissue in particular, are mostly affected in laminopathies, the aim of the study was to estimate the effect of LMNA mutations on differentiation(More)
BACKGROUND Cardiomyopathies represent a rare group of disorders often of genetic origin. While approximately 50% of genetic causes are known for other types of cardiomyopathies, the genetic spectrum of restrictive cardiomyopathy (RCM) is largely unknown. The aim of the present study was to identify the genetic background of idiopathic RCM and to compile the(More)
Muscular dystrophies caused by defects in various genes are often associated with impairment of calcium homeostasis. Studies of calcium currents are hampered because of the lack of a robust cellular model. Primary murine myotubes, formed upon satellite cell fusion, were examined for their utilization as a model of adult skeletal muscle. We enzymatically(More)
Nuclear lamins are the main proteins of the nuclear envelope providing nuclear-membrane strength. Recently, it became clear that lamins in cells play not only a structural role, but are also involved in regulation of gene expression. The LMNA gene encodes lamin A or C depending on the synthesizing splicing variant. The best-known LMNA mutation causes severe(More)
The study of pathogenesis of muscle disorders needs an appropriate cell model. In the field of muscle research, there is no general cell line considered standard for studying muscular and neuromuscular diseases. Most cell lines are incapable of differentiation into a muscle lineage exhibiting morphological and physiological properties of mature muscle cells(More)
  • 1