Natacha Callens

  • Citations Per Year
Learn More
We investigate the use of a digital holographic microscope working in partially coherent illumination to study in three dimensions a micrometer-size particle flow. The phenomenon under investigation rapidly varies in such a way that it is necessary to record, for every camera frame, the complete holographic information for further processing. For this(More)
We present a numerical technique for extended focused imaging and three-dimensional analysis of a microparticle field observed in a digital holographic microscope working in transmission. The three-dimensional localization of objects is performed using the local focus plane determination method based on the integrated amplitude modulus. We apply the(More)
We investigate the use of a digital holographic microscope working with partially coherent spatial illumination to study concentration profiles inside confined deformable bodies flowing in microchannels. The studied phenomenon is rapidly changing in time and requires the recording of the complete holographic information for every frame. For this purpose, we(More)
A mini splitterless-split-flow thin fractionation (SPLITT) device has been developed to achieve fast separations of micrometer-sized species. In this device, inlet and outlet steps have replaced the splitters, which are common to conventional SPLITT channels. By elimination of the splitters, it becomes straightforward to reduce channel dimensions while(More)
The behaviour of a vesicle suspension in a simple shear flow between plates (Couette flow) was investigated experimentally in parabolic flight and sounding rocket experiments by Digital Holographic Microscopy. The lift force which pushes deformable vesicles away from walls was quantitatively investigated and is found to be rather well described by a(More)
Mass production of Ehrlichia ruminantium variants from different regions of sub-Saharan Africa is one of the difficulties that must be overcome in producing a heartwater vaccine. Vaccine productivity can be limited by endogenous induction of interferon (IFN), which inhibits the propagation of Ehrlichia ruminantium (ER) in cell culture. Different kinds of(More)
  • 1