Natália T. Correia

Learn More
The thermal behavior and transport properties of several ion jellys (IJs), a composite that results from the combination of gelatin with an ionic liquid (IL), were investigated by dielectric relaxation spectroscopy (DRS), differential scanning calorimetry (DSC), and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG NMR). Four different ILs(More)
The molecular mobility of amorphous ibuprofen has been investigated by broadband dielectric relaxation spectroscopy (DRS) covering a temperature range of more than 200 K. Four different relaxation processes, labeled as alpha, beta, gamma, and D, were detected and characterized, and a complete relaxation map was given for the first time. The gamma-process(More)
The present work shows how Thermally Stimulated Depolarisation Currents (TSDC) is a useful and powerful technique to study slow molecular mobility. At the same time, the pedagogic value of this experimental technique for undergraduate Physical Chemistry courses is underlined. A general introduction to the background of TSDC and to the treatment of the(More)
To clarify the polymorphism of racemic Ibuprofen and to determine the kinetic of the phase transformation that follows crystallisation of phase II. Differential Scanning Calorimetry (DSC), X-ray powder diffraction and Hot Stage Microscopy are complementarily used to perform a kinetic investigation of the particular temperature range where competition(More)
By means of molecular dynamics simulations, dynamical properties of racemic ibuprofen glass-forming liquid are investigated at different temperatures from 360 to 500 K. The origin of the peculiar low amplitude Debye-type relaxation observed experimentally by dielectric relaxation spectroscopy is addressed (Bras, A. R.; Noronha, J. P.; Antunes, A. M. M.;(More)
The high-temperature phase I of anhydrous caffeine was obtained by heating and annealing the purified commercial form II at 450 K. This phase I can be maintained at low temperature in a metastable state. A powder X-ray diffraction pattern was recorded at 278 K with a laboratory diffractometer equipped with an INEL curved position-sensitive detector CPS120.(More)
The amorphization of the readily crystallizable therapeutic ingredient and food additive, menthol, was successfully achieved by inclusion of neat menthol in mesoporous silica matrixes of 3.2 and 5.9 nm size pores. Menthol amorphization was confirmed by the calorimetric detection of a glass transition. The respective glass transition temperature, Tg = -54.3(More)
Purpose. The purpose of this study was to estimate the activation energy at the glass transition temperature (and the fragility index) of amorphous indomethacin from the influence of heating rate on the features of the relaxation peaks obtained by thermally stimulated depolarization currents (TSDC) and to compare the obtained results with those obtained by(More)
The crystallization induced by different thermal treatments of a low molecular weight glass former, ethylene glycol dimethacrylate (EGDMA), was investigated by dielectric relaxation spectroscopy (DRS) and differential scanning calorimetry (DSC). The fully amorphous material, dielectrically characterized for the first time, exhibits three relaxation(More)
Statins have been widely used as cholesterol-lowering agents. However, low aqueous solubility of crystalline statins and, consequently, reduced biovailability require seeking for alternative forms and formulations to ensure an accurate therapeutic window. The objective of the present study was to evaluate the stability of amorphous simvastatin by probing(More)