Natália M. Breyner

Learn More
Cell-based tissue engineering using scaffolds provides a promising option for the repair of bone tissue damage caused by trauma or aging-related degeneration such as osteoporosis. In this study, a porous 3D scaffold was used to support the differentiation process of rat adipose-derived stem cells (ADSCs) into osteoblasts in vitro. The scaffold was made with(More)
Tissue engineering is based on the association of cultured cells with structural matrices and the incorporation of signaling molecules for inducing tissue regeneration. Despite its enormous potential, tissue engineering faces a major challenge concerning the maintenance of cell viability after the implantation of the constructs. The lack of a functional(More)
Faecalibacterium prausnitzii and its supernatant showed protective effects in different chemically-induced colitis models in mice. Recently, we described 7 peptides found in the F. prausnitzii supernatant, all belonging to a protein called Microbial Anti-inflammatory Molecule (MAM). These peptides were able to inhibit NF-κB pathway in vitro and showed(More)
BACKGROUND Mucositis is one of the most relevant gastrointestinal inflammatory conditions in humans, generated by the use of chemotherapy drugs, such as 5-fluoracil (5-FU). 5-FU-induced mucositis affects 80% of patients undergoing oncological treatment causing mucosal gut dysfunctions and great discomfort. As current therapy drugs presents limitations in(More)
  • 1