Learn More
Tumors are stiffer than normal tissue, and tumors have altered integrins. Because integrins are mechanotransducers that regulate cell fate, we asked whether tissue stiffness could promote malignant behavior by modulating integrins. We found that tumors are rigid because they have a stiff stroma and elevated Rho-dependent cytoskeletal tension that drives(More)
The morphology and cytoskeletal structure of fibroblasts, endothelial cells, and neutrophils are documented for cells cultured on surfaces with stiffness ranging from 2 to 55,000 Pa that have been laminated with fibronectin or collagen as adhesive ligand. When grown in sparse culture with no cell-cell contacts, fibroblasts and endothelial cells show an(More)
Invasive carcinomas survive and evade apoptosis despite the absence of an exogenous basement membrane. How epithelial tumors acquire anchorage independence for survival remains poorly defined. Epithelial tumors often secrete abundant amounts of the extracellular matrix protein laminin 5 (LM-5) and frequently express alpha6beta4 integrin. Here, we show that(More)
nvasive carcinomas survive and evade apoptosis despite the absence of an exogenous basement membrane. How epithelial tumors acquire anchorage independence for survival remains poorly defined. Epithelial tumors often secrete abundant amounts of the extracellular matrix protein laminin 5 (LM-5) and frequently express ␣ 6 ␤ 4 integrin. Here, we show that(More)
Tissue development, homeostasis and tumor pathogenesis all depend upon a complex dialogue between multiple cell types operating within a dynamic three-dimensional (3D) tissue extracellular matrix microenvironment. A major issue is whether the spatial organization of a cell within this 3D tissue microenvironment could modulate cell responsiveness to regulate(More)
Autocrine laminin-5 ligates {alpha}6{beta}4 integrin and activates RAC and NF{kappa}B to mediate anchorange-independent survival of mammary tumors Autocrine laminin-5 ligates {alpha}6{beta}4 integrin and activates RAC and NF{kappa}B to mediate anchorange-independent survival of mammary tumors Abstract Invasive carcinomas survive and evade apoptosis despite(More)
  • 1