Learn More
This paper addresses the problem of recognizing free-form 3D objects in point clouds. Compared to traditional approaches based on point descriptors, which depend on local information around points, we propose a novel method that creates a global model description based on oriented point pair features and matches that model locally using a fast voting(More)
UNLABELLED Attenuation correction (AC) of whole-body PET data in combined PET/MRI tomographs is expected to be a technical challenge. In this study, a potential solution based on a segmented attenuation map is proposed and evaluated in clinical PET/CT cases. METHODS Segmentation of the attenuation map into 4 classes (background, lungs, fat, and soft(More)
We present a method for detecting 3D objects using multi-modalities. While it is generic, we demonstrate it on the combination of an image and a dense depth map which give complementary object information. It works in real-time, under heavy clutter, does not require a time consuming training stage, and can handle untextured objects. It is based on an(More)
In this paper, we introduce a novel and efficient approach to dense image registration, which does not require a derivative of the employed cost function. In such a context, the registration problem is formulated using a discrete Markov random field objective function. First, towards dimensionality reduction on the variables we assume that the dense(More)
We present a method for real-time 3D object instance detection that does not require a time-consuming training stage, and can handle untextured objects. At its core, our approach is a novel image representation for template matching designed to be robust to small image transformations. This robustness is based on spread image gradient orientations and(More)
We present a method for real-time 3D object detection that does not require a time consuming training stage, and can handle untextured objects. At its core, is a novel template representation that is designed to be robust to small image transformations. This robustness based on dominant gradient orientations lets us test only a small subset of all possible(More)
The standard approach to multi-modal registration is to apply sophisticated similarity metrics such as mutual information. The disadvantage of these metrics, in comparison to measuring the intensity difference with, e.g. L1 or L2 distance, is the increase in computational complexity and consequently the increase in runtime of the registration. An(More)
Convolutional Neural Networks (CNNs) have been recently employed to solve problems from both the computer vision and medical image analysis fields. Despite their popularity, most approaches are only able to process 2D images while most medical data used in clinical practice consists of 3D volumes. In this work we propose an approach to 3D image segmentation(More)
This paper addresses the problem of estimating the depth map of a scene given a single RGB image. To model the ambiguous mapping between monocular images and depth maps, we leverage on deep learning capabilities and present a fully convolutional architecture encompassing residual learning. The proposed model is deeper than the current state of the art, but(More)