Learn More
We aimed to elucidate the role of electronic and structural parameters of nitroaromatic compounds in their two-electron reduction by NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC The multiparameter regression analysis shows that the reactivity of nitroaromatic compounds (n=38) increases with an increase in their single-electron(More)
BACKGROUND SecTRAPs (selenium compromised thioredoxin reductase-derived apoptotic proteins) can be formed from the selenoprotein thioredoxin reductase (TrxR) by targeting of its selenocysteine (Sec) residue with electrophiles, or by its removal through C-terminal truncation. SecTRAPs are devoid of thioredoxin reductase activity but can induce rapid cell(More)
Enterobacter cloacae NAD(P)H:nitroreductase (NR; EC catalyzes the reduction of a series of nitroaromatic compounds with steady-state bimolecular rate constants (kcat/Km) ranging from 10(4) to 10(7) M(-1) s(-1). In agreement with a previously proposed scheme of two-step four-electron reduction of nitroaromatics by NR (Koder, R. L., and Miller,(More)
UNLABELLED The anticancer activity of aziridinyl-quinones is mainly attributed to their NAD(P)H quinone oxidoreductase 1 (NQO1)-catalyzed two-electron reduction into DNA-alkylating products. However, little is known about their cytotoxicity in primary cells, which may be important in understanding their side effects. We found that the cytotoxicity of(More)
With an aim to understand the toxicity mechanisms of the explosive 4,6-dinitro- benzofuroxan (DNBF), we studied its single-electron reduction by NADPH:cytochrome P450 reductase and ferredoxin:NADP(+) reductase, and two- electron reduction by DT-diaphorase and Enterobacter cloacae nitroreductase. The enzymatic reactivities of DNBF and another explosive(More)
We examined the kinetics of single-electron reduction of a large number of structurally diverse quinones and nitroaromatic compounds, including a number of antitumour and antiparasitic drugs, and nitroaromatic explosives by recombinant rat neuronal nitric oxide synthase (nNOS, EC, aiming to characterize the role of nNOS in the oxidative(More)
Nitroaromatic explosives like 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenyl-N-methyl-nitramine (tetryl) comprise an important group of toxic environmental pollutants, whose toxicity is mainly attributed to the flavoenzyme electrontransferase-catalyzed redox cycling of their free radicals (oxidative stress) and DT-diaphorase [NAD(P)H:quinone(More)
Strong radical-scavenging activity of Geranium macrorrhizum extracts isolated by using various solvent systems has been reported previously. This study aimed at expanding the knowledge on the bioactivities of antioxidatively active G. macrorrhizum butanol fraction, which was isolated from ethanolic extract (EB), and water fraction, which was isolated from(More)
Enterobacter cloacae NAD(P)H:nitroreductase catalyzes the reduction of a series of nitroaromatic compounds with steady-state bimolecular rate constants (kcat/Km) ranging from 10(4) M(-1) s(-1) to 10(7) M(-1) s(-1), and oxidizing 2 moles NADH per mole mononitrocompound. Oxidation of excess NADH by polynitrobenzenes including explosives 2,4,6-trinitrotoluene(More)
Flavonoids exhibit prooxidant cytotoxicity in mammalian cells due to the formation of free radicals and oxidation products possessing quinone or quinomethide structure. However, it is unclear how the cytotoxicity of flavonoids depends on the ease of their single-electron oxidation in aqueous medium, i.e., the redox potential of the phenoxyl radical/phenol(More)