Naressa Cofield

Learn More
Remediation of soils containing high concentrations of polycyclic aromatic hydrocarbons (PAHs) seldom results in complete removal of contaminants, but residual toxicity often is reduced. In this study, soil from a former manufactured gas plant site was treated for 12 months by phytoremediation and then tested for total PAHs, Tenax-TA extractable ("labile")(More)
The impact of recalcitrant organic compounds on soil hydrophobicity was evaluated in contaminated soil from a manufactured gas plant site following 12 months of phytoremediation. Significant reduction in soil wetting and water retention was observed in contaminated soil compared to an uncontaminated control. Phytoremediation was effective at reducing total(More)
Investigations of potential risk from biosolids generally indicate that land application does not threaten human or ecosystem health, but questions continue to arise concerning the environmental effects of this practice. This research project was initiated to evaluate ecotoxicity resulting from the amendment of soils with biosolids from municipal wastewater(More)
Phytoremediation has been demonstrated to be a viable cleanup alternative for soils contaminated with petroleum products. This study evaluated the application of phytoremediation to soil from a manufactured gas plant (MGP) site with high concentrations of recalcitrant, polycyclic aromatic hydrocarbons (PAHs). Two greenhouse studies investigated the(More)
Several biological assays were used to evaluate the toxic effects of contaminants in soil after phytoremediation. During the treatment process, significant decreases in overall toxicity were observed. Specifically, earthworm survivability and lettuce germination increased over the study period. Microbial respiration improved, but only in planted treatments.(More)
  • 1