Narasimhan Rampalli

Learn More
Recent approaches to crowdsourcing entity matching (EM) are limited in that they crowdsource only parts of the EM workflow, requiring a developer to execute the remaining parts. Consequently, these approaches do not scale to the growing EM need at enterprises and crowdsourcing startups, and cannot handle scenarios where ordinary users (i.e., the masses)(More)
Large-scale classification is an increasingly critical Big Data problem. So far, however, very little has been published on how this is done in practice. In this paper we describe Chimera, our solution to classify tens of millions of products into 5000+ product types at WalmartLabs. We show that at this scale, many conventional assumptions regarding(More)
Big Data industrial systems that address problems such as classification, information extraction, and entity matching very commonly use hand-crafted rules. Today, however, little is understood about the usage of such rules. In this paper we explore this issue. We discuss how these systems differ from those considered in academia. We describe default(More)
  • 1