Learn More
In animals, the pedunculopontine (PPN) and the sub-cuneiform (SCU) nuclei located in the upper brainstem are involved during the processing of gait. Similar functional nuclei are suspected in humans but their role in gait is unclear. Here we show that, using extra-cellular recordings of the PPN/SCU region obtained in two parkinsonian patients, the SCU(More)
We have shown previously that near-infrared light (NIr) treatment or photobiomodulation neuroprotects dopaminergic cells in substantia nigra pars compacta (SNc) from degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Balb/c albino mice, a well-known model for Parkinson’s disease. The present study explores whether NIr treatment(More)
Since the 1960s, deep brain stimulation and spinal cord stimulation at low frequency (30 Hz) have been used to treat intractable pain of various origins. For this purpose, specific hardware have been designed, including deep brain electrodes, extensions, and implantable programmable generators (IPGs). In the meantime, movement disorders, and particularly(More)
The surgical treatment of intractable epilepsies involving eloquent areas of the cortex is still challenging. Deep-brain stimulation could be an alternative to resective surgery because it can modulate the remote control systems of epilepsy, such as the thalamus and basal ganglia. The surgical experience acquired in the field of movement disorder surgery(More)
We have examined dopaminergic cell survival after alteration of the subthalamic nucleus (STN) in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys. The STN was lesioned with kainic acid (B series) or underwent deep brain stimulation (DBS) at high frequency (C series). In another series, MPTP-treated and non-MPTP-treated monkeys had no STN(More)
OBJECTIVE Although electrophysiologic dysfunction of the subthalamic nucleus is putative, deep brain stimulation of this structure has recently been reported to improve obsessions and compulsions. In Parkinson disease, sensorimotor subthalamic neurons display high-frequency burst firing, which is considered as an electrophysiologic signature of motor loop(More)
OBJECT Previous experimental studies have documented the neuroprotection of damaged or diseased cells after applying, from outside the brain, near-infrared light (NIr) to the brain by using external light-emitting diodes (LEDs) or laser devices. In the present study, the authors describe an effective and reliable surgical method of applying to the brain,(More)
OBJECTIVE To examine whether near-infrared light (NIr) treatment reduces clinical signs and/or offers neuroprotection in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model of Parkinson disease. METHODS We implanted an optical fiber device that delivered NIr (670 nm) to the midbrain of macaque monkeys, close to the substantia nigra(More)
We explored whether 810nm near-infrared light (NIr) offered neuroprotection and/or improvement in locomotor activity in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease. Mice received MPTP and 810nm NIr treatments, or not, and were tested for locomotive activity in an open-field test. Thereafter, brains(More)