Napoleon Torres

John Mitrofanis9
Nabil El Massri8
Cécile Moro8
9John Mitrofanis
8Nabil El Massri
8Cécile Moro
Learn More
We have examined dopaminergic cell survival after alteration of the subthalamic nucleus (STN) in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys. The STN was lesioned with kainic acid (B series) or underwent deep brain stimulation (DBS) at high frequency (C series). In another series, MPTP-treated and non-MPTP-treated monkeys had no STN(More)
Since the 1960s, deep brain stimulation and spinal cord stimulation at low frequency (30 Hz) have been used to treat intractable pain of various origins. For this purpose, specific hardware have been designed, including deep brain electrodes, extensions, and implantable programmable generators (IPGs). In the meantime, movement disorders, and particularly(More)
OBJECTIVE Electrical high-frequency stimulation (HFS) of deep brain structures has been successfully used as a treatment for patients with movement disorders. The mechanisms of HFS allowing therapeutic clinical effects remain unclear, which justifies experimental studies to address these questions. These experiments require an external stimulator, which may(More)
OBJECTIVE Although electrophysiologic dysfunction of the subthalamic nucleus is putative, deep brain stimulation of this structure has recently been reported to improve obsessions and compulsions. In Parkinson disease, sensorimotor subthalamic neurons display high-frequency burst firing, which is considered as an electrophysiologic signature of motor loop(More)
The specific effect of DBS at high frequency, discovered during a VIM thalamotomy, was extended to the older targets of ablative neurosurgery such as the pallidum, for tremor in Parkinson's disease (PD), dyskinesias, essential tremor, as well as the internal capsule to treat psychiatric disorders (OCD). A second wave of targets came from basic research,(More)
We have shown previously that near-infrared light (NIr) treatment or photobiomodulation neuroprotects dopaminergic cells in substantia nigra pars compacta (SNc) from degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Balb/c albino mice, a well-known model for Parkinson’s disease. The present study explores whether NIr treatment(More)
We explored whether 810nm near-infrared light (NIr) offered neuroprotection and/or improvement in locomotor activity in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease. Mice received MPTP and 810nm NIr treatments, or not, and were tested for locomotive activity in an open-field test. Thereafter, brains(More)
OBJECTIVE To examine whether near-infrared light (NIr) treatment reduces clinical signs and/or offers neuroprotection in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model of Parkinson disease. METHODS We implanted an optical fiber device that delivered NIr (670 nm) to the midbrain of macaque monkeys, close to the substantia nigra(More)
In this paper a tensor-based approach is developed for calibration of binary self-paced brain-computer interface (BCI) systems. In order to form the feature tensor, electrocorticograms, recorded during behavioral experiments in freely moving animals (rats), were mapped to the spatial-temporal-frequency space using the continuous wavelet transformation. An(More)
OBJECT The authors of this study used a newly developed intracranial optical fiber device to deliver near-infrared light (NIr) to the midbrain of 6-hydroxydopamine (6-OHDA)-lesioned rats, a model of Parkinson's disease. The authors explored whether NIr had any impact on apomorphine-induced turning behavior and whether it was neuroprotective. METHODS Two NIr(More)