Learn More
High-precision analyses of supersymmetry parameters aim at reconstructing the fundamental supersymmetric theory and its breaking mechanism. A well defined theoretical framework is needed when higher-order corrections are included. We propose such a scheme, Supersymmetry Parameter Analysis SPA, based on a consistent set of conventions and input parameters. A(More)
We construct a model of direct gauge mediation of metastable SUSY breaking by simply deforming the Intriligator, Seiberg and Shih model in terms of a dual meson superpotential mass term. No extra matter field is introduced. The deformation explicitly breaks a U(1) R symmetry and a pseudo moduli have a nonzero VEV at one-loop. Our metastable SUSY breaking(More)
Gauge theory defined on the orbifold M 4 × (S 1 /Z 2) is investigated from the viewpoint of the Hosotani mechanism. Rearrangement of gauge symmetry takes place due to the dynamics of Wilson line phases. The physical symmetry of the theory, in general, differs from the symmetry of the boundary conditions. Several sets of boundary conditions having distinct(More)
We derive the low energy effective theory of Gauge-Higgs unification (GHU) models in the usual four dimensional framework. We find that the theories are described by only the zero-modes with a particular renormalization condition in which essential informations about GHU models are included. We call this condition " Gauge-Higgs condition " in this letter.(More)
A new framework for handling flavor symmetry breaking in the neutrino sector is discussed where the source of symmetry breaking is traced to the global property of right-handed neutrinos in extra-dimensional space. Light neutrino phenomenology has rich and robust predictions such as the tribimaximal form of generation mixing, controlled mass spectrum, and(More)
The Superkamiokande experiment suggests the large flavor mixing between ν µ and ν τ. We show that the mixing angle receives significant corrections from the renormalization group equation (RGE) when both the second and the third generation neutrino masses are larger than O(0.1eV). This means that the mixing angle must be small at the decoupling scale of(More)
We study the dynamical symmetry breaking in the gauge-Higgs unification of the 5D theory compactified on an orbifold, S 1 /Z 2. This theory identifies Wilson line degrees of freedoms as " Higgs doublets ". We consider SU (3) c × SU (3) W and SU (6) models with the compactification scale of order a few TeV. The gauge symmetries are reduced to SU (3) c × SU(More)
In the 5D theory in which only 3 generation right-handed neutrinos are in the bulk, the neutrino flavor mixings and the mass spectrum can be constructed through the seesaw mechanism. The 5D seesaw is easily calculated just by a replacement of the Majorana mass eigenvalues, M i , by tan(h)[πRM i ] (R: compactification scale). The 5D features appear when the(More)
We advocate a new approach to study models of fermion masses and mix-ings, namely anarchy proposed in Ref. [1]. In this approach, we scan the O(1) coefficients randomly. We argue that this is the correct approach when the fundamental theory is sufficiently complicated. Assuming there is no physical distinction among three generations of neutrinos, the(More)