Naoya Doi

Learn More
TRIM5α is a potent anti-retroviral factor that interacts with viral capsid (CA) in a species-specific manner. Recently, we and others reported generation of two distinct HIV-1 CAs that effectively overcome rhesus TRIM5α-imposed species barrier. In this study, to directly compare the effect of different mutations in the two HIV-1 CAs on evasion from macaque(More)
Human immunodeficiency virus type 1 (HIV-1) replication in macaque cells is restricted mainly by antiviral cellular APOBEC3, TRIM5α/TRIM5CypA, and tetherin proteins. For basic and clinical HIV-1/AIDS studies, efforts to construct macaque-tropic HIV-1 (HIV-1mt) have been made by us and others. Although rhesus macaques are commonly and successfully used as(More)
Monkey infection models are absolutely necessary for studies of human immunodeficiency virus type 1 (HIV-1) pathogenesis and of developing drugs/vaccines against HIV-1. In addition, currently unknown roles of its accessory proteins for in vivo replication await elucidation by experimental approaches. Due to the fact that HIV-1 is tropic only for chimpanzees(More)
Human immunodeficiency virus type 2 (HIV-2) carries an accessory protein Vpx that is important for viral replication in natural target cells. In its C-terminal region, there is a highly conserved poly-proline motif (PPM) consisting of seven consecutive prolines, encoded in a poly-pyrimidine tract. We have previously shown that PPM is critical for Vpx(More)
Eleven in-frame vif gene mutants of HIV type 1 produced in non-permissive cells were examined for their replication potentials in various CD4-positive and -negative cell lines. Virus replication for each mutant was monitored by using several single- and multiple-cycle infectivity assays. Except for a mutant with wild-type phenotype, most mutants were(More)
Requirement of intrinsically disordered protein Vpx for HIV-2 replication is cell-type dependent. To define Vpx-dependent conditions, replication ability of HIV-2 vpx mutants was analyzed in various cell lines that differ in cellular type, differentiation state and/or expression level of anti-HIV-1 SAMHD1 degraded by Vpx. Induction of Vpx-sensitive(More)
Fundamental property of viruses is to rapidly adapt themselves under changing conditions of virus replication. Using HIV-1 derivatives that poorly replicate in macaque cells as model viruses, we studied here mechanisms for promoting viral replication in non-natural host cells. We found that the HIV-1s could evolve to grow better in both macaque and human(More)
To obtain monkey-tropic (mt) HIV-1 derivatives with distinct biological characteristics and to improve the viral growth property, we have generated several variants from a prototype mt HIV-1 designated NL-DT5R (X4-tropic). The prototype HIV-1 contains a portion of gag and entire vif genes from SIVmac in its genome. The two derivatives carrying 3'(More)
We previously generated a prototype monkey-tropic human immunodeficiency virus type 1 (HIV-1) designated NL-DT5R. This viral clone has a small region of simian immunodeficiency virus (SIV) within Gag capsid (CA) protein and also SIV Vif protein, but displays a poor growth phenotype in simian cells. To improve the growth potential of NL-DT5R, we have(More)
Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1) envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120(More)