Naoto Shibuya

Learn More
Chitin is a major component of fungal cell walls and serves as a microbe-associated molecular pattern (MAMP) for the detection of various potential pathogens in innate immune systems of both plants and animals. We recently showed that chitin elicitor-binding protein (CEBiP), plasma membrane glycoprotein with LysM motifs, functions as a cell surface receptor(More)
Chitin is a major component of fungal cell walls and serves as a molecular pattern for the recognition of potential pathogens in the innate immune systems of both plants and animals. In plants, chitin oligosaccharides have been known to induce various defense responses in a wide range of plant cells including both monocots and dicots. To clarify the(More)
Higher plants have the ability to initiate various defence reactions such as the production of phytoalexins, antimicrobial proteins, reactive oxygen species, and reinforcement of cell walls when they are infected by pathogens such as fungi, bacteria and viruses. If these reactions occur in a timely manner, the infection will not proceed further. However, if(More)
Chitin is a major molecular pattern for various fungi, and its fragments, chitin oligosaccharides, are known to induce various defense responses in plant cells. A plasma membrane glycoprotein, CEBiP (chitin elicitor binding protein) and a receptor kinase, CERK1 (chitin elicitor receptor kinase) (also known as LysM-RLK1), were identified as critical(More)
Multicellular organisms activate immunity upon recognition of pathogen-associated molecular patterns (PAMPs). Chitin is the major component of fungal cell walls, and chitin oligosaccharides act as PAMPs in plant and mammalian cells. Microbial pathogens deliver effector proteins to suppress PAMP-triggered host immunity and to establish infection. Here, we(More)
Rice diterpenoid phytoalexins such as momilactones and phytocassanes are produced in suspension-cultured rice cells treated with a chitin oligosaccharide elicitor and in rice leaves irradiated with UV light. The common substrate geranylgeranyl diphosphate is converted into diterpene hydrocarbon precursors via a two-step sequential cyclization and then into(More)
We present a detailed characterization of the chitin oligosaccharide elicitor-induced gene OsWRKY53. OsWRKY53 was also induced in suspension-cultured rice cells by a fungal cerebroside elicitor and in rice plants by infection with the blast fungus Magnaporthe grisea. A fusion of OsWRKY53 with green fluorescent protein was detected exclusively in the nuclei(More)
EL5, a rice gene responsive to N-acetylchitooligosaccharide elicitor, encodes a RING-H2 finger protein with structural features common to the plant-specific ATL family. We show that the fusion protein of EL5 with maltose binding protein (MBP) was polyubiquitinated by incubation with ubiquitin, ubiquitin-activating enzyme (E1), and the Ubc4/5 subfamily of(More)
Phospholipase D (PLD) plays an important role in plants, including responses to abiotic as well as biotic stresses. A survey of the rice (Oryza sativa) genome database indicated the presence of 17 PLD genes in the genome, among which OsPLDalpha1, OsPLDalpha5, and OsPLDbeta1 were highly expressed in most tissues studied. To examine the physiological function(More)
WRKY transcription factors form a large family of plant-specific transcription factors and participate in plant defense responses either as positive or negative regulators. In this study, we comprehensively analyzed the role of one of the group IIa WRKY transcription factors in rice, OsWRKY28, in the regulation of basal defense responses to a compatible(More)