Learn More
Synchronous oscillatory activity has been observed in a range of neural networks from invertebrate nervous systems to the human frontal cortex. In humans and other primates, sensorimotor regions of the neocortex exhibit synchronous oscillations in the beta-frequency band (approximately 15-30 Hz), and these are also prominent in the cerebellum, a brainstem(More)
We analyzed neuronal activity in the supplementary eye field (SEF), supplementary motor area (SMA), and presupplementary motor area (pre-SMA) during the performance of three motor tasks: capturing a visual target with a saccade, reaching one arm to a target while gazing at a visual fixation point, or capturing a target with a saccade and arm-reach together.(More)
Brain-machine interfaces (BMIs) employ the electrical activity generated by cortical neurons directly for controlling external devices and have been conceived as a means for restoring human cognitive or sensory-motor functions. The dominant approach in BMI research has been to decode motor variables based on single-unit activity (SUA). Unfortunately, this(More)
Complex biological systems such as human language and the genetic code are characterized by explicit markers at the beginning and end of functional sequences. We report here that macaque prefrontal cortical neurons exhibit phasic peaks of spike activity that occur at the beginning and endpoint of sequential oculomotor saccade performance and have the(More)
We have developed a novel experimental platform, referred to as a substitutional reality (SR) system, for studying the conviction of the perception of live reality and related metacognitive functions. The SR system was designed to manipulate people's reality by allowing them to experience live scenes (in which they were physically present) and recorded(More)
Encoding time is universally required for learning and structuring motor and cognitive actions, but how the brain keeps track of time is still not understood. We searched for time representations in cortico-basal ganglia circuits by recording from thousands of neurons in the prefrontal cortex and striatum of macaque monkeys performing a routine visuomotor(More)
Socially correct behavior requires constant observation of the social environment. Behavior that was appropriate a few seconds ago is not guaranteed to be appropriate now. The brain keeps the eyes focused on the current social space and constantly updates its internal representation of the environment and social context. Monitoring the behavior of others is(More)
A new generalized multilinear regression model, termed the higher order partial least squares (HOPLS), is introduced with the aim to predict a tensor (multiway array) Y from a tensor X through projecting the data onto the latent space and performing regression on the corresponding latent variables. HOPLS differs substantially from other regression models in(More)
When humans use a tool, it becomes an extension of the hand physically and perceptually. Common introspection might occur in monkeys trained in tool-use, which should depend on brain operations that constantly update and automatically integrate information about the current intrinsic (somatosensory) and the extrinsic (visual) status of the body parts and(More)
Primate neurophysiology has revealed various neural mechanisms at the single-cell level and population level. However, because recording techniques have not been updated for several decades, the types of experimental design that can be applied in the emerging field of social neuroscience are limited, in particular those involving interactions within a(More)