Naomi Hayashi

Learn More
Uptake of external sulfate from the environment and use of internal vacuolar sulfate pools are two important aspects of the acquisition of sulfur for metabolism. In this study, we demonstrated that the vacuolar SULTR4-type sulfate transporter facilitates the efflux of sulfate from the vacuoles and plays critical roles in optimizing the internal distribution(More)
Xylem transport of sulfate regulates distribution of sulfur in vascular plants. Here, we describe SULTR3;5 as an essential component of the sulfate transport system that facilitates the root-to-shoot transport of sulfate in the vasculature. In Arabidopsis (Arabidopsis thaliana), SULTR3;5 was colocalized with the SULTR2;1 low-affinity sulfate transporter in(More)
Metabolites are not only the catalytic products of enzymatic reactions but also the active regulators or the ultimate phenotype of metabolic homeostasis in highly complex cellular processes. The modes of regulation at the metabolome level can be revealed by metabolic networks. We investigated the metabolic network between wild-type and 2 mutant(More)
Because of ever-increasing environmental deterioration it is likely that the influx of UV-B radiation (280-320 nm) will increase as a result of the depletion of stratospheric ozone. Given this fact it is essential that we better understand both the rapid and the adaptive responses of plants to UV-B stress. Here, we compare the metabolic responses of(More)
We have developed a comprehensive method combining analytical techniques of one-dimensional (1D) and two-dimensional (GC x GC) gas chromatography-time-of-flight (TOF)-mass spectrometry. This method was applied to the metabolic phenotyping of natural variants in rice for the 68 world rice core collection (WRC) and two other varieties. Ten metabolites were(More)
Rice plants grown in paddy fields preferentially use ammonium as a source of inorganic nitrogen. Glutamine synthetase (GS) catalyses the conversion of ammonium to glutamine. Of the three genes encoding cytosolic GS in rice, OsGS1;1 is critical for normal growth and grain filling. However, the basis of its physiological function that may alter the rate of(More)
Plant metabolomics developed as a powerful tool to examine gene functions and to gain deeper insight into the physiology of the plant cell. In this study, we screened Arabidopsis lines overexpressing rice full-length (FL) cDNAs (rice FOX Arabidopsis lines) using a gas chromatography-time-of-flight mass spectrometry (GC-TOF/MS)-based technique to identify(More)
The full-length cDNA over-expressing (FOX) gene hunting system is useful for genome-wide gain-of-function analysis. The screening of FOX lines requires a high-throughput metabolomic method that can detect a wide range of metabolites. Fourier transform-near-infrared (FT-NIR) spectroscopy in combination with the chemometric approach has been used to analyze(More)
Despite recent intensive research efforts in functional genomics, the functions of only a limited number of Arabidopsis (Arabidopsis thaliana) genes have been determined experimentally, and improving gene annotation remains a major challenge in plant science. As metabolite profiling can characterize the metabolomic phenotype of a genetic perturbation in the(More)
Opioid-induced constipation (OIC) is a very troublesome, difficult to manage and a nearly universal complication of chronic opioid use to control pain associated with advanced illness. Some studies have reported that OIC is so intolerable in some patients that they skip their opioid medications and bear pain instead of OIC. Laxatives have commonly been used(More)