Naoko Nose-Togawa

Learn More
Singular spectrum analysis is developed as a nonparametric spectral decomposition of a time series. It can be easily extended to the decomposition of multidimensional lattice-like data through the filtering interpretation. In this viewpoint, the singular spectrum analysis can be understood as the adaptive and optimal generation of the filters and their(More)
Singular spectrum analysis (SSA) is a nonparametric and adaptive spectral decomposition of a time series. The singular value decomposition of the trajectory matrix and the anti-diagonal averaging leads to a time-series decomposition. In this algorithm, a single free parameter , window length K, is involved which is the FIR filter length for the time series.(More)
  • 1