Learn More
Human artificial chromosomes (HACs) have several advantages as gene therapy vectors, including stable episomal maintenance, and the ability to carry large gene inserts. We previously developed HAC vectors from the normal human chromosomes using a chromosome engineering technique. However, endogenous genes were remained in these HACs, limiting their(More)
Myeloid-derived suppressor cells (MDSCs) are of myeloid origin and are able to suppress T cell responses. The role of MDSCs in autoimmune diseases remains controversial, and little is known about the function of MDSCs in autoimmune arthritis. In this study, we clarify that MDSCs play crucial roles in the regulation of proinflammatory immune response in a(More)
Human artificial chromosomes (HACs) have several advantages as gene therapy vectors, including stable episomal maintenance that avoids insertional mutations and the ability to carry large gene inserts including regulatory elements. Multipotent germline stem (mGS) cells have a great potential for gene therapy because they can be generated from an(More)
Human papillomaviruses (HPVs) target the stratified epidermis, and can causes diseases ranging from benign condylomas to malignant tumors. Infections of HPVs in the genital tract are among the most common sexually transmitted diseases, and a major risk factor for cervical cancer. The virus targets epithelial cells in the basal layer of the epithelium, while(More)
In order to identify cellular factors that regulate human papillomavirus type 16 (HPV16) gene expression, cervical cancer cells permissive for HPV16 late gene expression were identified and characterized. These cells either contained a novel spliced variant of the L1 mRNAs that bypassed the suppressed HPV16 late, 5'-splice site SD3632; produced elevated(More)
The human papillomavirus (HPV) life cycle is strictly linked to the differentiation program of the infected mucosal epithelial cell. In the basal and lower levels of the epithelium, early genes coding for pro-mitotic proteins and viral replication factors are expressed, while terminal cell differentiation is required for activation of late gene expression(More)
Infections of human papillomavirus (HPV) induce a variety of benign tumors, such as warts and condylomas. During the process of aberrant cell proliferation, genetic mutations are accumulated in the cells, from which malignant tumor cells arise. The viral oncoproteins E6 and E7 are known to help disrupt the cell cycle checkpoint machinery and accelerate(More)
Human papillomaviruses (HPVs) infect the stratified epithelial organ. The infection induces benign tumors, which occasionally progress into malignant tumors. To elucidate the virus-induced tumorigenesis, an understanding of the lifecycle of HPV is crucial. In this report, we developed a new system for the analysis of the HPV lifecycle. The new system(More)
Infection by human papillomavirus (HPV) is a major risk factor for human cervical carcinoma. However, the HPV infection alone is not sufficient for cancer formation. Cervical carcinogenesis is considered a multistep process accompanied by genetic alterations of the cell. Ras is activated in approximately 20% of human cancers, and it is related to the(More)