Learn More
Starch synthase IIIa (SSIIIa)-deficient rice (Oryza sativa) mutants were generated using retrotransposon insertion and chemical mutagenesis. The lowest migrating SS activity bands on glycogen-containing native polyacrylamide gel, which were identified to be those for SSIIIa, were completely absent in these mutants, indicating that they are SSIIIa null(More)
Plastidial phosphorylase (Pho1) accounts for approximately 96% of the total phosphorylase activity in developing rice (Oryza sativa) seeds. From mutant stocks induced by N-methyl-N-nitrosourea treatment, we identified plants with mutations in the Pho1 gene that are deficient in Pho1. Strikingly, the size of mature seeds and the starch content in these(More)
Four amino acids were variable between the ‘active’ indica-type and ‘inactive’ japonica-type soluble starch synthase Ha (SSIIa) of rice plants; Glu-88 and Gly-604 in SSIIa of indica-cultivars IR36 and Kasalath were replaced by Asp-88 and Ser-604, respectively, in both japonica cultivars Nipponbare and Kinmaze SSIIa, whereas Val-737 and Leu-781 in indica(More)
Four starch synthase I (SSI)-deficient rice (Oryza sativa) mutant lines were generated using retrotransposon Tos17 insertion. The mutants exhibited different levels of SSI activities and produced significantly lower amounts of SSI protein ranging from 0% to 20% of the wild type. The mutant endosperm amylopectin showed a decrease in chains with degree of(More)
Starch synthase (SS) I and IIIa are the first and second largest components of total soluble SS activity, respectively, in developing japonica rice (Oryza sativa L.) endosperm. To elucidate the distinct and overlapping functions of these enzymes, double mutants were created by crossing the ss1 null mutant with the ss3a null mutant. In the F(2) generation,(More)
When the starch branching enzyme IIb (BEIIb) gene was introduced into a BEIIb-defective mutant, the resulting transgenic rice plants showed a wide range of BEIIb activity and the fine structure of their amylopectins showed considerable variation despite having the two other BE isoforms, BEI and BEIIa, in their endosperm at the same levels as in the(More)
A novel 56-kDa granule-bound starch synthase (GBSS; NDPglucose-starch glucosyltransferase, EC 2.4.1.21) responsible for amylose synthesis was found in the pericarps, aleurone layers and embryos of immature diploid wheat (Triticum monococcum L.). The GBSS and other proteins bound to starch granules of various tissues of immature normal and waxy diploid wheat(More)
We have isolated a starch mutant that was deficient in starch-branching enzyme I (BEI) from the endosperm mutant stocks of rice (Oryza sativa) induced by the treatment of fertilized egg cells with N-methyl-N-nitrosourea. The deficiency of BEI in this mutant was controlled by a single recessive gene, tentatively designated as starch-branching enzyme mutant 1(More)
Many people suffer from intractable bedsores, which sometimes develop because of chronic metabolic failure in patients. An extract of the root of Lithospermun erythrorhison (SK) has been reported to have an effect on wound healing. However, the effects of SK have not been studied in chronic wounds, such as bedsores. The healing-impaired diabetic (db/db)(More)
Isoamylase (EC 3.2.1.68) in rice (Oryza sativa L.) was efficiently purified within a day to homogeneity, as confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), from developing endosperm by sequential use of Q Sepharose HP anion- exchange chromatography, ammonium sulfate fractionation, and TSKgel G4000SWXL and G3000SWXL gel(More)