Naoki Sunaguchi

  • Citations Per Year
Learn More
X-ray crystal interferometer-based X-ray phase-contrast microtomography (phase-contrast microtomography) is able to image microstructures within soft tissue without the use of a contrast agent. Here we determined the feasibility of using this technique in the non-destructive inspection of formalin-fixed kidney tissue from certain hamsters that spontaneously(More)
We propose a 3-dimensional fluorescent x-ray computed tomography (CT) pinhole collimator, aimed at providing molecular imaging with quantifiable measures and sub-millimeter spatial resolution. In this study, we demonstrate the feasibility of this concept and investigate imaging properties such as spatial resolution, contrast resolution and quantifiable(More)
We derive a reconstruction algorithm for refraction-contrast computed tomography (CT) using dark-field imaging (DFI) optics, which can extract refraction information by a single shot, from the ray equation in geometrical optics. The proposed algorithm is similar to the convolution reconstruction technique widely used in conventional CT. Thus, this algorithm(More)
We demonstrate the soft tissue discrimination capability of X-ray dark-field imaging (XDFI) using a variety of human tissue specimens. The experimental setup for XDFI comprises an X-ray source, an asymmetrically cut Bragg-type monochromator-collimator (MC), a Laue-case angle analyser (LAA) and a CCD camera. The specimen is placed between the MC and the LAA.(More)
We demonstrated a depth-resolved 3D imaging technique based on absorption contrast using tomosynthesis. Tomosynthesis is similar to computed tomography except that the number of projections is much smaller. We constructed a tomosynthesis imaging system, which detects a transmitted continuous THz wave. We applied a backprojection method that was suitable for(More)
In order to study potent microenvironments of malignant gliomas with a high- resolution x-ray imaging technique, an injection orthotopic glioma model was made using the Sprague-Dawley rat. Total brain tissue, taken out as an ex vivo model, was examined with diffraction-enhanced imaging (DEI) computed tomography (CT) acquired with a 35 keV monochromatic(More)
We propose a pinhole-based fluorescent x-ray computed tomography (p-FXCT) system with a 2-D detector and volumetric beam that can suppress the quality deterioration caused by scatter components. In the corresponding p-FXCT technique, projections are acquired at individual incident energies just above and below the K-edge of the imaged trace element; then,(More)
Fluorescent X-ray computed tomography (FXCT) using synchrotron radiation reveals the cross-sectional distribution of specific elements in biomedical objects. The aim of this study was to investigate the feasibility of FXCT imaging to assess the myocardial metabolic state quantitatively. Hearts labelled with non-radioactive iodine myocardial fatty acid agent(More)
This paper describes an algebraic reconstruction algorithm that uses total variation (TV) regularization for differential phase contrast computed tomography (DPC-CT) using a limited number of views. In order to overcome over-flattening inherent in TV regularization, a two-step reconstruction process is used: we first reconstruct tomographic images of(More)
Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is(More)