Naoki Sunaguchi

Learn More
We demonstrated a depth-resolved 3D imaging technique based on absorption contrast using tomosynthesis. Tomosynthesis is similar to computed tomography except that the number of projections is much smaller. We constructed a tomosynthesis imaging system, which detects a transmitted continuous THz wave. We applied a backprojection method that was suitable for(More)
We propose a pinhole-based fluorescent x-ray computed tomography (p-FXCT) system with a 2-D detector and volumetric beam that can suppress the quality deterioration caused by scatter components. In the corresponding p-FXCT technique, projections are acquired at individual incident energies just above and below the K-edge of the imaged trace element; then,(More)
We propose an efficient reconstruction algorithm from limited-view projections for differential phase-contrast computed tomography, based on the projection theorem for Laplacian image, proved in the research. First, the algorithm first reconstructs the Laplacian image of the target phase-shift-term distribution from the second-derivative projections(More)
X-ray phase-contrast tomography can significantly increase the contrast-resolution of conventional attenuation-contrast imaging, especially for soft-tissue structures that have very similar attenuation. Just as in attenuation-based tomography, phase contrast tomography requires a linear dependence of aggregate beam direction on the incremental direction(More)
Fluorescent X-ray CT (FXCT), which has high-contrast and high-spatial resolution, is being developed for in-vivo biomedical research. Since FXCT could depict the specific heavy atomic number elements in the order of picogram, the functional imaging resembling to single photon emission CT can be obtained. We have applied this technique for in-vivo and(More)
  • 1