Naoki Fukata

Learn More
Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given(More)
Magnetic/fluorescent composite materials have become one of the most important tools in the imaging modality in vivo using magnetic resonance imaging (MRI) monitoring and fluorescence optical imaging. We report herein on a simplified procedure to synthesize hybrid nanoparticles (HNPs) that combine silicon and magnetic iron oxides consisting of magnetite(More)
Gaining an understanding the dynamic behaviors of dopant atoms in silicon nanowires (SiNWs) is the key to achieving low-power and high-speed transistor devices using SiNWs. The segregation behavior of boron (B) and phosphorus (P) atoms in B- and P-doped SiNWs during thermal oxidation was closely observed using B local vibrational peaks and Fano broadening(More)
A high-precision technique was utilized to construct and characterize axial nanowire heterojunctions inside a high-resolution transmission electron microscope (HRTEM). By an in-tandem technique using an ultra-sharp tungsten probe as the nanomanipulator and an optical fiber as the optical waveguide the nanoscale CdS/p-Si axial nanowire junctions were(More)
Impurity doping is the most important technique to functionalize semiconductor nanowires. The crucial point is how the states of impurity atoms can be detected. The chemical bonding states and electrical activity of boron (B) and phosphorus (P) atoms in germanium nanowires (GeNWs) are clarified by micro-Raman scattering measurements. The observation of B(More)
Deformation and fracture mechanisms of ultrathin Si nanowires (NWs), with diameters of down to ~9 nm, under uniaxial tension and bending were investigated by using in situ transmission electron microscopy and molecular dynamics simulations. It was revealed that the mechanical behavior of Si NWs had been closely related to the wire diameter, loading(More)
Core-shell nanowires (NWs) composed of silicon (Si) and germanium (Ge) are key structures for realizing high mobility transistor channels, since the site-selective doping and band-offset in core-shell NWs separate the carrier transport region from the impurity doped region, resulting in the suppression of impurity scattering. Four different types of Si/Ge(More)
We report the first observation of the electronic level scheme in boron (B)- and phosphorus (P)-doped nanowires (NWs). The NWs' morphology dramatically depends on the doping impurity while a few deep electronic levels appear in both kinds of nanowires, independently of the doping type. We demonstrate that the doping impurities induce the same shallow levels(More)
It is demonstrated that boron-doped nanowires have predominantly long-term stable wurtzite phase while the majority of phosphorus-doped ones present diamond phase. A simplified model based on the different solubility of boron and phosphorus in gold is proposed to explain their diverse effectiveness in retaining the wurtzite phase. The wurtzite nanowires(More)
Methyl orange (MO) can be degraded by a photocatalytic process using TiO₂ under UV irradiation. The photo-generated holes and electrons can migrate to the surface of TiO₂ particles and serve as redox sources that react with adsorbed reactants, leading to the formation of superoxide radical anions, hydrogen peroxide and hydroxyl radicals involved in the(More)