Learn More
Impurity doping is the most important technique to functionalize semiconductor nanowires. The crucial point is how the states of impurity atoms can be detected. The chemical bonding states and electrical activity of boron (B) and phosphorus (P) atoms in germanium nanowires (GeNWs) are clarified by micro-Raman scattering measurements. The observation of B(More)
Silicon (Si)/organic polymer hybrid solar cells have great potential for becoming cost-effective and efficient energy-harvesting devices. We report herein on the effects of polymer coverage and the rear electrode on the device performance of Si/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid solar cells with micro-pyramidal(More)
The infrared synchrotron radiation (IR-SR) beamline of SPring-8 as an IR light source was applied to characterize boron (B) atoms in silicon nanowires (SiNWs). The use of an IR-SR beam with much higher brilliance than conventional IR light sources and a wide range of wavenumbers from visible to far IR regions made it possible to detect a local vibrational(More)
Off-axis electron holography has been used to quantitatively determine the mean inner potential of ZnO. [0001] grown ZnO nanowires with hexagonal cross-sections were chosen as our samples because the angle between the adjacent surfaces is 120°, as confirmed by electron tomography, so the entire geometry of the nanowire could be precisely determined. The(More)
Silicon, the mainstay semiconductor in microelectronic circuitry, is considered unsuitable for optoelectronic applications owing to its indirect electronic band gap, which limits its efficiency as a light emitter. Here we show the light emission properties of boron-doped wurtzite silicon nanowires measured by cathodoluminescence spectroscopy at room(More)
  • 1