Naohito Nishimura

Learn More
Transport of membrane proteins between intracellular compartments requires specific sequences in the protein cytoplasmic domain to direct packaging into vesicle shuttles. A sequence that mediates export from the endoplasmic reticulum (ER) has proved elusive. A di-acidic signal (Asp-X-Glu, where X represents any amino acid) on the cytoplasmic tail of(More)
Efficient export of vesicular stomatitis virus glycoprotein (VSV-G), a type I transmembrane protein, from the endoplasmic reticulum requires a di-acidic code (DXE) located in the cytosolic carboxyl-terminal tail (Nishimura, N., and Balch, W. E. (1997) Science 277, 556-558). Mutation of the DXE code by mutation to AXA did not prevent VSV-G recruitment to(More)
The intermediate compartment residing between the endoplasmic reticulum (ER) and the Golgi is now recognized to be a dynamic structure that captures cargo released from the ER in COPII vesicular carriers and promotes recycling by COPI vesicular carriers. These and other findings now provide compelling evidence for the importance of this intermediate in(More)
Guanine nucleotide dissociation inhibitor (GDI) regulates the recycling of Rab GTPases involved in vesicle targeting and fusion. We have analyzed the requirement for conserved amino acid residues in the binding of Rab1A and the function of GDI in transport of cargo between the endoplasmic reticulum (ER) and the Golgi apparatus. Using a new approach to(More)
The gluA gene, encoding an endo-beta-1,3-glucanase from Arthrobacter sp. (strain NHB-10), was cloned and analyzed. The deduced endo-beta-1,3-glucanase amino acid sequence was 750 amino acids long and contained a 42 amino acid signal peptide with a mature protein of 708 amino acids. There was no similarity to known endo-beta-1,3-glucanases, but GluA was(More)
  • 1