Learn More
The objective of the present study was to assess the predictive ability of subsets of single nucleotide polymorphism (SNP) markers for development of low-cost, low-density genotyping assays in dairy cattle. Dense SNP genotypes of 4,703 Holstein bulls were provided by the USDA Agricultural Research Service. A subset of 3,305 bulls born from 1952 to 1998 was(More)
Genome-wide association studies using single nucleotide polymorphisms (SNPs) can identify genetic variants related to complex traits. Typically thousands of SNPs are genotyped, whereas the number of phenotypes for which there is genomic information may be smaller. When predicting phenotypes, options for statistical model building range from incorporating(More)
Four approaches using single-nucleotide polymorphism (SNP) information (F(infinity)-metric model, kernel regression, reproducing kernel Hilbert spaces (RKHS) regression, and a Bayesian regression) were compared with a standard procedure of genetic evaluation (E-BLUP) of sires using mortality rates in broilers as a response variable, working in a Bayesian(More)
Genomic data provide a valuable source of information for modeling covariance structures, allowing a more accurate prediction of total genetic values (GVs). We apply the kriging concept, originally developed in the geostatistical context for predictions in the low-dimensional space, to the high-dimensional space spanned by genomic single nucleotide(More)
A challenge when predicting total genetic values for complex quantitative traits is that an unknown number of quantitative trait loci may affect phenotypes via cryptic interactions. If markers are available, assuming that their effects on phenotypes are additive may lead to poor predictive ability. Non-parametric radial basis function (RBF) regression,(More)
Although many methods are available to test sequence variants for association with complex diseases and traits, methods that specifically seek to identify causal variants are less developed. Here we develop and evaluate a Bayesian hierarchical regression method that incorporates prior information on the likelihood of variant causality through weighting of(More)
Genome-assisted prediction of genetic merit of individuals for a quantitative trait requires building statistical models that can handle data sets consisting of a massive number of markers and many fewer observations. Numerous regression models have been proposed in which marker effects are treated as random variables. Alternatively, multivariate dimension(More)
A byproduct of genome-wide association studies is the possibility of carrying out genome-enabled prediction of disease risk or of quantitative traits. This study is concerned with predicting two quantitative traits, milk yield in dairy cattle and grain yield in wheat, using dense molecular markers as predictors. Two support vector regression (SVR) models,(More)
Genomewide marker information can improve the reliability of breeding value predictions for young selection candidates in genomic selection. However, the cost of genotyping limits its use to elite animals, and how such selective genotyping affects predictive ability of genomic selection models is an open question. We performed a simulation study to evaluate(More)
Multi-category classification methods were used to detect SNP-mortality associations in broilers. The objective was to select a subset of whole genome SNPs associated with chick mortality. This was done by categorizing mortality rates and using a filter-wrapper feature selection procedure in each of the classification methods evaluated. Different numbers of(More)