Learn More
This paper describes a new method for mitigating the effects of atmospheric distortion on observed images, particularly airborne turbulence which degrades a region of interest (ROI). In order to provide accurate detail from objects behind the distorting layer, a simple and efficient frame selection method is proposed to pick informative ROIs from only(More)
This paper presents novel pre-processing image enhancement algorithms for retinal optical coherence tomography (OCT). These images contain a large amount of speckle causing them to be grainy and of very low contrast. To make these images valuable for clinical interpretation, we propose a novel method to remove speckle, while preserving useful information(More)
This paper describes a new method for automated texture classification for glaucoma detection using high resolution retinal Optical Coherence Tomography (OCT). OCT is a non-invasive technique that produces cross-sectional imagery of ocular tissue. Here, we exploit information from OCT images , specifically the inner retinal layer thickness and speckle(More)
Restoring a scene distorted by atmospheric turbulence is a challenging problem in video surveillance. The effect, caused by random, spatially varying, perturbations, makes a model-based solution difficult and in most cases, impractical. In this paper, we propose a novel method for mitigating the effects of atmospheric distortion on observed images,(More)
This paper presents a method of image restoration for projective ground images which lie on a projection orthogonal to the camera axis. The ground images are initially transformed using homography, and then the proposed image restoration is applied. The process is performed in the dual-tree complex wavelet transform domain in conjunction with L0 reweighting(More)
A novel algorithm for disparity/depth estimation from multi-view images is presented. A dynamic programming approach with window-based correlation and a novel cost function is proposed. The smoothness of disparity/depth map is embedded in dynamic programming approach, whilst the window-based correlation increases reliability. The enhancement methods are(More)
This paper presents a concealment based approach to distributed video coding that uses hybrid key/WZ frames via an FMO type interleaving of macroblocks. Our motivation stems from a previous work of ours that showed promising results relative to the more common approach of splitting the sequence in key and WZ frames. In this paper, we extend our previous(More)
This paper presents a novel method of fixation identification for mobile eye trackers. The most significant benefit of our method over the state-of-the-art is that it achieves high accuracy for low-sample-rate devices worn during locomotion. This in turn delivers higher quality datasets for further use in human behaviour research, robotics and the(More)
This paper presents a novel framework to achieve scalable multi-view image coding. As open loop operation, the wavelet lifting scheme for geometric filtering has been exploited to overcome the limitation of SNR scalability and to attain view scalability. The essential key for achieving the spatial scalability is the in-band prediction. It removes(More)
Systems with cheap/simple/power efficient encoders but complex decoders make applications such as low cost, low power remote sensors practical. Bandwidth considerations however are still an issue and compression efficiency has to remain high. In this paper, we present a distributed video codec (DVC) that we are developing with the aim of achieving such a(More)