Learn More
We have developed a novel method to measure human cardiac pulse at a distance. It is based on the information contained in the thermal signal emitted from major superficial vessels. This signal is acquired through a highly sensitive thermal imaging system. Temperature on the vessel is modulated by pulsative blood flow. To compute the frequency of modulation(More)
We have developed a novel method to measure human cardiac pulse at a distance. It is based on the information contained in the thermal signal emitted from major superficial vessels. This signal is acquired through a highly sensitive thermal imaging system. Temperature on the vessel is modulated by pulsative blood flow. To compute the frequency of modulation(More)
In the present paper, we propose a new pulse measurement methodology based on thermal imaging (contact-free). The method capitalizes both on the thermal undulation produced by the traveling pulse as well as the periodic expansion of the compliant vessel wall. The paper reports experiments on 34 subjects, where it compares the performance of the new pulse(More)
We propose a novel system that incorporates physiological monitoring as part of the human–computer interface. The sensing element is a thermal camera that is employed as a computer peripheral. Through bioheat modeling of facial imagery almost the full range of vital signs can be extracted, including localize blood flow, cardiac pulse, and breath rate. This(More)
In the present paper, we propose a new pulse measurement methodology based on thermal imaging (contact-free). The method capitalizes both on the thermal undulation produced by the traveling pulse as well as the periodic expansion of the compliant vessel wall. The paper reports experiments on 34 subjects, where it compares the performance of the new pulse(More)
I. ABSTRACT Our research focuses on physiological measurements using computer vision methodologies and has found applications in biomedicine, psychology, and biometrics. The measurements are extracted by processing emitted thermal radiation signals from facial tissue. Therefore, we use as a sensing device a mid-wave infrared camera, which is incorporated(More)
  • 1