Learn More
In this paper, we propose a new particle filter based on sequential importance sampling. The algorithm uses a bank of unscented filters to obtain the importance proposal distribution. This proposal has two very "nice" properties. Firstly, it makes efficient use of the latest available information and, secondly, it can have heavy tails. As a result, we find(More)
We present a new approach for modeling multi-modal data sets, focusing on the specific case of segmented images with associated text. Learning the joint distribution of image regions and words has many applications. We consider in detail predicting words associated with whole images (auto-annotation) and corresponding to particular image regions (region(More)
The problem of tracking a varying number of non-rigid objects has two major difficulties. First, the observation models and target distributions can be highly non-linear and non-Gaussian. Second, the presence of a large, varying number of objects creates complex interactions with overlap and ambiguities. To surmount these difficulties, we introduce a vision(More)
We present a tutorial on Bayesian optimization, a method of finding the maximum of expensive cost functions. Bayesian optimization employs the Bayesian technique of setting a prior over the objective function and combining it with evidence to get a posterior function. This permits a utility-based selection of the next observation to make on the objective(More)
This purpose of this introductory paper is threefold. First, it introduces the Monte Carlo method with emphasis on probabilistic machine learning. Second, it reviews the main building blocks of modern Markov chain Monte Carlo simulation, thereby providing and introduction to the remaining papers of this special issue. Lastly, it discusses new interesting(More)
We consider object recognition as the process of attaching meaningful labels to specific regions of an image, and propose a model that learns spatial relationships between objects. Given a set of images and their associated text (e.g. keywords, captions, descriptions), the objective is to segment an image, in either a crude or sophisticated fashion, then to(More)
We consider estimation methods for the class of continuous-data energy based models (EBMs). Our main result shows that estimating the parameters of an EBM using score matching when the conditional distribution over the visible units is Gaussian corresponds to training a particular form of reg-ularized autoencoder. We show how different Gaussian EBMs lead to(More)
We demonstrate that there is significant redundancy in the parameterization of several deep learning models. Given only a few weight values for each feature it is possible to accurately predict the remaining values. Moreover, we show that not only can the parameter values be predicted, but many of them need not be learned at all. We train several different(More)
We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to perform the Bayesian computation. We find that the results(More)