Learn More
The complexes of the electron transport chain associate into large macromolecular assemblies, which are believed to facilitate efficient electron flow. We have identified a conserved mitochondrial protein, named respiratory supercomplex factor 1 (Rcf1-Yml030w), that is required for the normal assembly of respiratory supercomplexes. We demonstrate that Rcf1(More)
Members of the Snf1/AMP-activated protein kinase family are activated under conditions of nutrient stress by a distinct upstream kinase. Here we present evidence that the yeast Pak1 kinase functions as a Snf1-activating kinase. Pak1 associates with the Snf1 kinase in vivo, and the association is greatly enhanced under glucose-limiting conditions when Snf1(More)
The Snf1 kinase complex of Saccharomyces cerevisiae contains one of three possible beta subunits encoded by either SIP1, SIP2, or GAL83. Snf1 kinase complexes were purified from cells expressing only one of the three beta subunits using a tandem affinity purification tag on the C terminus of the Snf1 protein. The purified kinase complexes were enzymatically(More)
The presence of a complete (BH1-3) proapoptotic molecule is necessary for the induction of the intrinsic apoptotic cascade in mammalian cells. It is unclear, however, what distinct roles the members of the large family of BH3-only proapoptotic molecules play in apoptosis. Although biochemical analysis of these molecules can characterize binding efficiencies(More)
Activation of the Snf1 kinase requires at least two events, phosphorylation of the activation loop on threonine 210 and an Snf4-dependent process that is not completely defined. Snf4 directly interacts with a region of the regulatory domain of Snf1 that may otherwise act as an autoinhibitory domain. In order to gain insight into the regulation of Snf1(More)
Large insert mate pair reads have a major impact on the overall success of de novo assembly and the discovery of inherited and acquired structural variants. The positional information of mate pair reads generally improves genome assembly by resolving repeat elements and/or ordering contigs. Currently available methods for building such libraries have one or(More)
Sequence analysis of the hepatitis B virus (HBV) genome revealed the presence of an open reading frame (ORF X) which has the potential to encode a 154-amino acid polypeptide. A fusion protein containing 145 of the amino acids encoded by ORF X and 8 amino acids of beta-galactosidase was expressed and characterized in bacterial extracts. Immunoprecipitations(More)
The open reading frame (ORF) that encodes the 226-amino-acid coat protein (hepatitis B virus surface antigen [HBsAg]) of hepatitis B virus has the potential to encode a 400-amino-acid polypeptide. The entire ORF would direct the synthesis of a polypeptide whose C-terminal amino acids represent HBsAg with an additional 174 amino acids at the N terminus(More)
A segment of the largest open reading frame of hepatitis B virus (HBV) was inserted into an open reading frame vector directing the expression in Escherichia coli of a fusion molecule containing 143 HBV-encoded amino acids. The fusion protein was used to generate antiserum which served in immunoblots to identify a polypeptide with a molecular mass of 65(More)
  • 1