Nandita Jha

  • Citations Per Year
Learn More
Complexes of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Pt(II) with 3- and 5-substituted salicylaldehyde 2-pyridinylhydrazones (XSPH, X = H, 3-NO2, 3-CH3O, 5-Br, 5-Cl, 5-CH3, or 5-NO2) have been prepared and characterized by elemental analysis, conductance measurements, magnetic moments (300-78 K), and spectral studies. On the basis of these(More)
Complexes of Mn(III), Fe(III), Fe(II), Co(III), Ni(II), Cu(II), Zn(II), and Pt(II) with S-methyl-N-(l-isoquinolyl) methylendithiocarbazate (N-N-SH) were isolated and characterized by elemental analysis, conductance measurement, magnetic susceptibilities, and spectroscopic studies. On the basis of these studies, a highly distorted, high-spin, chloro-bridged,(More)
Complexes of Mn(II), Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Pt(II) with 2,6-diacetylpyridine bis(N4-azacyclic thiosemicarbazones), abbreviated as H2L, have been prepared and characterized by elemental analysis, molar conductance, magnetic moments (300-78 K) and spectral studies. On the basis of these studies, a distorted six-coordinate(More)
Complexes of iron(II) and iron(III) with 1-formylisoquinoline thiosemicarbazone (1-iqtsc-H), 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone (4-Me-5-NH2-1-iqtsc-H) and 4-(m-aminophenyl)-2-formylpyridine thiosemicarbazone (4-m-NH2ph-2-pytsc-H) were synthesized and characterized by elemental analysis, conductance measurements, magnetic(More)
A few coordination compounds of silicon (IV) have been synthesized by the interaction of trimethyl- and triphenyl-chlorosilane with nitrogen-sulphur donor ligands. These compounds are monomeric, as indicated by molecular weight determination, and they behave as nonelectrolytes in dry DMF. From the electronic, infrared, 1H, and 13C NMR spectral results, it(More)
Parkinson's disease (PD) is characterized by the presence of proteinaceous neuronal inclusions called Lewy bodies in susceptible dopaminergic midbrain neurons. Inhibition of the ubiquitin-proteasome protein degradation pathway may contribute to protein build-up and subsequent cell death. Ubiquitin is normally activated for transfer to substrate proteins by(More)
  • 1