Nanda Ghoshal

Learn More
Aimed at identification and structural characterization of novel putative therapeutic targets in H. pylori, the etiological agent of numerous gastrointestinal diseases including peptic ulcer and gastric cancer, the present study comprised of three phases. First, through subtractive analysis of metabolic pathways of Helicobacter pylori HPAG1 and human, as(More)
The gene for glutathione-S-transferase (GST) M1 (GSTM1), a member of the GST-superfamily, is widely studied in cancer risk with regard to the homozygous deletion of the gene (GSTM1 null), leading to a lack of corresponding enzymatic activity. Many of these studies have reported inconsistent findings regarding its association with cancer risk. Therefore, we(More)
Transcription is initiated when RNA polymerase recognizes the duplex promoter DNA in the closed complex. Due to its transient nature, the closed complex has not been well characterized. How the initial promoter recognition occurs may offer important clues to regulation of transcription initiation. In this article, we have carried out single-base pair(More)
Protein flexibility plays a significant role in drug research due to its effect on accurate prediction of ligand binding mode and activity. Adenosine kinase (AK) represents a highly flexible binding site and is known to exhibit large conformational changes as a result of substrate or inhibitor binding. Here we propose a semi-open conformation for ligand(More)
Designing selective cyclin-dependent kinase 4 (CDK4) inhibitors is an area of intense research to develop potential anticancer drugs. The molecular basis governing the selective inhibition of CDK4 by lig17 (6-bromo-8-cyclopentyl-2-(5-piperazin-1-yl-pyridin-2-ylamino)-8H-pyrido[2,3-d]pyrimidin-7-one) has been investigated using molecular dynamics simulation.(More)
Novel antileishmanials are urgently required to overcome emergence of drug resistance, cytotoxic effects, and difficulties in oral delivery. Toward this, we investigated a series of novel 4-aminoquinaldine derivatives, a new class of molecules, as potential antileishmanials. 4-Aminoquinaldine derivatives presented inhibitory effects on L. donovani(More)
The ability to identify fragments that interact with a biological target is a key step in FBDD. To date, the concept of fragment based drug design (FBDD) is increasingly driven by bio-physical methods. To expand the boundaries of QSAR paradigm, and to rationalize FBDD using In silico approach, we propose a fragment based QSAR methodology referred here in as(More)
Mycobacterium tuberculosis, the pathogen responsible for tuberculosis, uses various strategies to survive in a variety of host lesions. The re-emergence of multi-drug-resistant strains of M. tuberculosis underlines the necessity to discover new molecules. Inhibitors of aryl acid adenylating enzyme, MbtA, involved in siderophore biosynthesis in M.(More)
Selective modulators of GABA(A) alpha(3) (gamma amino butyric acid alpha(3)) receptor are known to alleviate the side effects associated with nonspecific modulators. A follow up study was undertaken on a series of functionally selective phthalazines with an ideological credo of identifying more potent isofunctional chemotypes. A bioisosteric database(More)
C-Jun N-terminal kinase (JNK) is a therapeutic target for inhibitors which may provide clinical benefit in the pathogenesis of rheumatoid arthritis (RA) as well as in various apoptosis-related disorders. The benzothiazol-2-yl acetonitrile derivatives, recently reported by Pascale et al. (J. Med. Chem. 2005, 48, 4596-4607), are the first generation JNK(More)