Nancy S. Pollard

Learn More
Real-time control of three-dimensional avatars is an important problem in the context of computer games and virtual environments. Avatar animation and control is difficult, however, because a large repertoire of avatar behaviors must be made available, and the user must be able to select from this set of behaviors, possibly with a low-dimensional input(More)
Optimization is an appealing way to compute the motion of an animated character because it allows the user to specify the desired motion in a sparse, intuitive way. The difficulty of solving this problem for complex characters such as humans is due in part to the high dimensionality of the search space. The dimensionality is an artifact of the problem(More)
Much of the motion capture data used in animations, commercials, and video games is carefully segmented into distinct motions either at the time of capture or by hand after the capture session. As we move toward collecting more and longer motion sequences, however, automatic segmentation techniques will become important for processing the results in a(More)
Animated human characters in everyday scenarios must interact with the environment using their hands. Captured human motion can provide a database of realistic examples. However, examples involving contact are difficult to edit and retarget; realism can suffer when a grasp does not appear secure or when an apparent impact does not disturb the hand or the(More)
We present an image editing program which allows artists to paint in the gradient domain with real-time feedback on megapixel-sized images. Along with a pedestrian, though powerful, gradient-painting brush and gradient-clone tool, we introduce an <i>edge brush</i> designed for edge selection and replay. These brushes, coupled with special blending modes,(More)
Using pre-recorded human motion and trajectory tracking, we can control the motion of a humanoid robot for free-space, upper body gestures. However, the number of degrees of freedom, range of joint motion, and achievable joint velocities of today’s humanoid robots are far more limited than those of the average human subject. In this paper, we explore a set(More)
In game environments, animated character motion must rapidly adapt to changes in player input - for example, if a directional signal from the player's gamepad is not incorporated into the character's trajectory immediately, the character may blithely run off a ledge. Traditional schemes for data-driven character animation lack the split-second reactivity(More)