Nancy R. Stallings

Learn More
Familial ALS patients with TDP-43 gene mutations and sporadic ALS patients share common TDP-43 neuronal pathology. To delineate mechanisms underlying TDP-43 proteinopathies, transgenic mice expressing A315T, M337V or wild type human TDP-43 were generated. Multiple TDP-43 founders developed a severe early motor phenotype that correlated with TDP-43 levels in(More)
The primary event in mammalian sexual development is the differentiation of the bipotential gonads into either testes or ovaries. Our understanding of the molecular pathways specifying gonadal differentiation is still incomplete. To identify the initial molecular changes accompanying gonadal differentiation in mice, we have performed a large-scale(More)
Congenital defects in genital and/or gonadal development occur in 1 in 1000 humans, but the molecular basis for these defects in most cases remains undefined. We show that the basic helix-loop-helix transcription factor Pod1 (capsulin/epicardin/Tcf21) is essential for normal development of the testes and ovaries, and hence for sexual differentiation. The(More)
The ventromedial hypothalamic nucleus (VMH) plays an important role in the control of feeding and energy homeostasis. In contrast to other hypothalamic nuclei that are also known to regulate energy balance, there is a paucity of nucleus-specific marker genes for the VMH, limiting the application of molecular approaches for analyzing VMH information(More)
The antiandrogenic drug, flutamide, is widely used in the treatment of carcinoma of the prostate. The present study examines the metabolism of flutamide by human liver microsomes and purified recombinant human cytochrome P450s (CYP), expressed as fusion proteins. These studies show the principal role of CYP1A2 in the metabolism of flutamide to(More)
Knockout mice lacking steroidogenic factor 1 (SF-1, officially designated Nr5a1) have a complex phenotype that includes adrenal and gonadal agenesis, impaired expression of pituitary gonadotropins, and structural abnormalities of the ventromedial hypothalamic nucleus. To explore further how SF-1 regulates endocrine function, we used bacterial artificial(More)
MicroRNA (miRNA) maturation is regulated by interaction of particular miRNA precursors with specific RNA-binding proteins. Following their biogenesis, mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) where they interact with mRNAs to negatively regulate protein production. However, little is known about how mature miRNAs are(More)
Leptin, an adipocyte-derived hormone, has emerged as a critical regulator of energy homeostasis. The leptin receptor (Lepr) is expressed in discrete regions of the brain; among the sites of highest expression are several mediobasal hypothalamic nuclei known to play a role in energy homeostasis, including the arcuate nucleus, the ventromedial hypothalamic(More)
The orphan nuclear receptor steroidogenic factor 1 (SF-1, also called Ad4BP and officially designated NR5A1) has emerged as an essential regulator of endocrine development and function. Initially identified as a tissue-specific transcriptional regulator of the cytochrome P450 steroid hydroxylases, SF-1 has considerably broader roles, as evidenced from(More)
The nuclear receptor steroidogenic factor 1 (SF-1) plays essential roles in the development and function of the ventromedial hypothalamic nucleus (VMH). Considerable evidence links the VMH and SF-1 with the regulation of energy homeostasis. Here, we demonstrate that SF-1 colocalizes in VMH neurons with the cannabinoid receptor 1 (CB1R) and that a specific(More)