Learn More
A microfluidic pore structure etched into a silicon wafer was used as a two-dimensional model subsurface sedimentary system (i.e., micromodel) to study mineral precipitation and permeability reduction relevant to groundwater remediation and geological carbon sequestration. Solutions containing CaCl(2) and Na(2)CO(3) at four different saturation states (Ω =(More)
Pu L(3) X-ray near edge absorption spectra for Pu(0-VII) are reported for more than 60 chalcogenides, chlorides, hydrates, hydroxides, nitrates, carbonates, oxy-hydroxides, and other compounds both as solids and in solution, and substituted in zirconolite, perovskite, and borosilicate glass. This large database extends the known correlations between the(More)
Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth, comparable in size to the atmospheric CO2 reservoir. A vast number of compounds are present in DOM, and they play important roles in all major element cycles, contribute to the storage of atmospheric CO2 in the ocean, support marine ecosystems, and(More)
Pu L(3) X-ray absorption fine structure spectra from 24 samples of PuO(2+x) (and two related Pu-substituted oxides), prepared by a variety of methods, demonstrate that (1) although the Pu sublattice remains the ordered part of the Pu distribution, the nearest-neighbor O atoms even at x = 0 are found in a multisite distribution with Pu-O distances consistent(More)
Soil organic matter (SOM), a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely(More)
The cyber environment has rapidly evolved from a curiosity to an essential component of the contemporary world. As the cyber environment has expanded and become more complex, so have the nature of adversaries and styles of attacks. Today, cyber incidents are an expected part of life. As a result, cybersecurity research emerged to address adversarial attacks(More)
The structural behavior of (11)B-, (2)H-enriched ammonia borane, ND(3)(11)BD(3), over the temperature range from 15 to 340 K was investigated using a combination of neutron powder diffraction and ab initio molecular dynamics simulations. In the low temperature orthorhombic phase, the progressive displacement of the borane group under the amine group was(More)
Pu L(3) XAFS measurements show that the excess oxygen in single phase PuO(2+)(x)() occurs as oxo groups with Pu-O distances of 1.83-1.91 A. This distance and the energy of the edge (via comparison with a large number of related compounds) are more consistent with a Pu(IV/V) than a Pu(IV/VI) mixture. Analogous to Pu(IV) colloids, although the Pu-Pu pair(More)
Pertechnetate was slowly reduced in a natural, untreated arid sediment under anaerobic conditions (0.02 nmolg(-1)h(-1)), which could occur in low permeability zones in the field, most of which was quickly oxidized. A small portion of the surface Tc may be incorporated into slowly dissolving surface phases, so was not readily oxidized/remobilized into pore(More)
This study examines the nature of highly fragile reaction products that form in low water content supercritical carbon dioxide (scCO2) using a combination of focus ion beam/scanning electron microscopy, confocal Raman spectroscopy, helium ion microscopy (HeIM), and transmission electron microscopy (TEM). HeIM images show these precipitates are fragile(More)