Nancy J Alexander

Learn More
We constructed a genetic linkage map of Gibberella zeae (Fusarium graminearum) by crossing complementary nitrate-nonutilizing (nit) mutants of G. zeae strains R-5470 (from Japan) and Z-3639 (from Kansas). We selected 99 nitrate-utilizing (recombinant) progeny and analyzed them for amplified fragment length polymorphisms (AFLPs). We used 34 pairs of two-base(More)
Certain Fusarium species cause head blight of wheat and other small grains worldwide and produce trichothecene mycotoxins. These mycotoxins can induce toxicoses in animals and humans and can contribute to the ability of some fusaria to cause plant disease. Production of the trichothecene 3-acetyldeoxynivalenol (3-ADON) versus 15-acetyldeoxynivalenol(More)
Simian immunodeficiency virus (SIV) can cross the intact vaginal epithelium to establish a systemic infection in macaques (mac). Using this SIVmac model, we found that subcutaneous progesterone implants, which could mimic hormonally based contraceptives, thinned the vaginal epithelium and enhanced SIV vaginal transmission 7.7-fold over that observed in(More)
Trichothecenes are terpene-derived secondary metabolites produced by multiple genera of filamentous fungi, including many plant pathogenic species of Fusarium. These metabolites are of interest because they are toxic to animals and plants and can contribute to pathogenesis of Fusarium on some crop species. Fusarium graminearum and F. sporotrichioides have(More)
As the world's population grows, access to a safe food supply will continue to be a global priority. In recent years, the world has experienced an increase in mycotoxin contamination of grains due to climatic and agronomic changes that encourage fungal growth during cultivation. A number of the molds that are plant pathogens produce trichothecene(More)
The trichothecenes T-2 toxin and deoxynivalenol (DON) are natural fungal products that are toxic to both animals and plants. Their importance in the pathogenicity of Fusarium spp. on crop plants has inspired efforts to understand the genetic and biochemical mechanisms leading to trichothecene synthesis. In order to better understand T-2 toxin biosynthesis(More)
Many of the genes involved in trichothecene toxin biosynthesis in Fusarium sporotrichioides are present within a gene cluster. Here we report the complete sequence for TRI12, a gene encoding a trichothecene efflux pump that is located within the trichothecene gene cluster of F. sporotrichioides. TRI12 encodes a putative polypeptide of 598 residues with(More)
Gibberella zeae (asexual state Fusarium graminearum) is a major causal agent of wheat head blight and maize ear rot in North America and is responsible for contamination of grain with deoxynivalenol and related trichothecene mycotoxins. To identify additional trichothecene biosynthetic genes, cDNA libraries were prepared from fungal cultures under(More)
We screened a Fusarium sporotrichioides NRRL 3299 cDNA expression library in a toxin-sensitive Saccharomyces cerevisiae strain lacking a functional PDR5 gene. Fourteen yeast transformants were identified as resistant to the trichothecene 4,15-diacetoxyscirpenol, and each carried a cDNA encoding the trichothecene 3-O-acetyltransferase that is the F.(More)
Several genes in the trichothecene biosynthetic pathway of Fusarium sporotrichioides have been shown to reside in a gene cluster. Sequence analysis of a cloned DNA fragment located 3.8 kb downstream from TRI5 has led to the identification of the TRI11 gene. The nucleotide sequence of TRI11 predicts a polypeptide of 492 residues (Mr = 55,579) with(More)