Learn More
The objective of this study was to evaluate the respiration inhibition induced by octanol, cadmium, N-ethylmaleimide (NEM) and cyanide on activated sludge biomasses with different floc structures but similar physiological characteristics. Mechanical shearing was applied to fresh mixed liquor to produce biomasses with different floc structure properties.(More)
The goal of this study was to determine the impact of physiological growth states (batch exponential and batch stationary growth) and growth modes (substrate-limited chemostat, substrate-sufficient exponential batch, and substrate-depleted stationary batch growth) on several measures of growth and responses to Cd(II)-mediated inhibition of Nitrosomonas(More)
The biological fate of 17α-ethinylestradiol (EE2; 500 ng/L to 1 mg/L) and trimethoprim (TMP; 1 μg/L to 1 mg/L) was evaluated with flow through reactors containing an ammonia oxidizing bacterial (AOB) culture, two enriched heterotrophic cultures devoid of nitrifier activity, and nitrifying activated sludge (NAS) cultures. AOBs biotransformed EE2 but not TMP,(More)
Metabolic footprinting coupled with statistical analysis was applied to multiple, chemically stressed activated sludge cultures to identify probable biomarkers that indicate community stress. The impact of cadmium (Cd), 2,4-dinitrophenol (DNP), and N-ethyl-maleimide (NEM) shock loads on the composition of the soluble fraction of activated sludge cultures(More)
The sorption of carbamazepine (CBZ), iopromide (IOP), trimethoprim (TMP) and 17α-ethinylestradiol (EE2) was evaluated using four biomass types (pure ammonia oxidizing bacterial culture, two heterotrophic enrichment cultures with varying levels of oxygenase activity, and a full-scale nitrifying activated sludge (NAS) culture). CBZ and IOP did not sorb to the(More)
Through chemical contamination of natural environments, microbial communities are exposed to many different types of chemical stressors; however, research on whole-genome responses to this contaminant stress is limited. This study examined the transcriptome response of a common soil bacterium, Pseudomonas aeruginosa, to the common environmental contaminant(More)
The sorption behavior of pyrene for different size fractions of colloidal organic carbon (COC) originating from two biological wastewater treatment facilities (a full-scale activated sludge system (FSAS) and a membrane bioreactor (MBR)) was investigated by fluorescence quenching. Fluorescence lifetime measurements demonstrated a dynamic quenching component(More)
The transport processes of microorganisms in storm-generated flows have not been clearly elucidated, limiting the ability of computational models to effectively design and evaluate watershed remediation plans. Although several studies have identified association with particulates as a critical factor in predicting microbial transport and fate, no generally(More)
The objective of this study was to evaluate emerging anaerobic membrane bioreactor (AnMBR) technology in comparison with conventional wastewater energy recovery technologies. Wastewater treatment process modeling and systems analyses were combined to evaluate the conditions under which AnMBR may produce more net energy and have lower life cycle(More)
Conventional aerobic nitrification was adversely affected by single pulse inputs of six different classes of industrially relevant chemical toxins: an electrophilic solvent (1-chloro-2,4-dinitrobenzene, CDNB), a heavy metal (cadmium), a hydrophobic chemical (1-octanol), an uncoupling agent (2,4-dinitrophenol, DNP), alkaline pH, and cyanide in its weak metal(More)