Nancy C Stellwagen

Learn More
The electrophoretic mobilities and diffusion coefficients of single- and double-stranded DNA molecules up to 50,000 bases or base pairs in size have been analyzed, using mobilities and diffusion coefficients either measured by capillary electrophoresis or taken from the literature. The Einstein equation suggests that the electrophoretic mobilities (mu) and(More)
The free solution mobility of DNA molecules of different molecular weights, the sequence dependence of the mobility, and the diffusion coefficients of small single- and double-stranded DNA (ss- and dsDNA) molecules can be measured accurately by capillary zone electrophoresis, using coated capillaries to minimize the electroosmotic flow (EOF) of the solvent.(More)
The dependence of DNA mobility anomalies on gel pore size has been studied in polyacrylamide gels with a wide variety of compositions, using molecular weight ladders containing multiple copies of normal (12B) and anomalously slowly migrating (12A) 147-base pair restriction fragments from plasmid pBR322 as the migrating probe molecules. If the gel pore size(More)
The mobilities of various DNA fragments in two normally migrating molecular weight ladders were studied in polyacrylamide gels containing different concentrations of the crosslinker N,N'-methylenebisacrylamide (Bis). The acrylamide concentration ranged from 2.5-10.5%T (w/v); the Bis concentration ranged from 0.5-10%C (w/w), with respect to total acrylamide.(More)
A detailed study has been made of the polyacrylamide gel electrophoresis of DNA restriction fragments obtained from two plasmids, pBR322 and p82-6B. Variables studied were molecular weight, gel concentration, temperature, and electric field strength. The retardation coefficients of the larger fragments (greater than 800 base pairs) were independent of(More)
Previous studies have shown that the apparent pore size of agarose gels is dependent on the buffer in which the gel is cast and run (D.L. Holmes and N.C. Stellwagen, Electrophoresis 1990, 11, 5-15; N.C. Stellwagen and D.L. Holmes, Electrophoresis 1990, 11, 649-652). However, these studies, based on the mobility of DNA restriction fragments, neglected the(More)
The free solution mobility of DNA has been measured by capillary electrophoresis in the two buffers most commonly used for DNA gel electrophoresis, Tris-borate-EDTA (TBE) and Tris-acetate-EDTA (TAE). The capillaries were coated with polymers of either of two novel acrylamide monomers, N-acryloylaminoethoxyethanol or N-acryloylaminopropanol, both of which(More)
The apparent translational diffusion coefficients of four 20 base pair (bp) DNA oligonucleotides with different sequences have been measured by capillary electrophoresis, using the stopped migration method. The diffusion coefficients of the four oligomers were equal within experimental error, and averaged (120 +/- 10) x 10(-8) cm(2) s(-1) in 40 mM(More)
DNA electrophoretic mobilities are highly dependent on the nature of the matrix in which the separation takes place. This review describes the effect of the matrix on DNA separations in agarose gels, polyacrylamide gels and solutions containing entangled linear polymers, correlating the electrophoretic mobilities with information obtained from other types(More)
Atomic force microscopy (AFM) has been used to image a 471-bp bent DNA restriction fragment derived from the M13 origin of replication in plasmid LITMUS 28, and a 476-bp normal, unbent fragment from plasmid pUC19. The most probable angle of curvature of the 471-bp DNA fragment is 40-50 degrees, in reasonably good agreement with the bend angle determined by(More)