Learn More
A transect of 68 acid grasslands across Great Britain, covering the lower range of ambient annual nitrogen deposition in the industrialized world (5 to 35 kg Nha-1 year-1), indicates that long-term, chronic nitrogen deposition has significantly reduced plant species richness. Species richness declines as a linear function of the rate of inorganic nitrogen(More)
Natural wetlands form the largest source of methane (CH(4)) to the atmosphere. Emission of this powerful greenhouse gas from wetlands is known to depend on climate, with increasing temperature and rainfall both expected to increase methane emissions. This study, combining our field and controlled environment manipulation studies in Europe and North America,(More)
Regional-scale databases can be particularly useful for identifying relationships between dissolved inorganic nitrogen (N) leaching in forests and environmental drivers, which in turn allow an assessment of the risk of ecosystem damage, such as forest acidification and eutrophication of downstream water bodies. However, detecting the 'signal' of a(More)
Evidence from an international survey in the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is reducing plant species richness in acid grasslands. Across the deposition gradient in this region (2-44 kg N ha(-1) yr(-1)) species richness showed a curvilinear response, with greatest reductions in species richness when(More)
The deposition of high levels of reactive nitrogen (N) and sulphur (S), or the legacy of that deposition, remain among the world's most important environmental problems. Although regional impacts of acid deposition in aquatic ecosystems have been well documented, quantitative evidence of wide-scale impacts on terrestrial ecosystems is not common. In this(More)
Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature,(More)
Nutrient pollution presents a serious threat to biodiversity conservation. In terrestrial ecosystems, the deleterious effects of nitrogen pollution are increasingly understood and several mitigating environmental policies have been developed. Compared to nitrogen, the effects of increased phosphorus have received far less attention, although some studies(More)
The results of a literature study examining quantitative estimates of N 2 O emission rates are presented for a range of land-uses across Europe. The analysis shows that the highest N 2 O emission rates are for agricultural lands compared to forests and grasslands. The main factors regulating these rates are available mineral nitrogen, soil temperature, soil(More)
Nitrous oxide fluxes and denitrification rates were measured in situ over a year at a riparian site in the UK. An exponential relationship was found between denitrification rates and soil moisture, with a sharp increase in denitrification rate at a water-filled pore space of 60–80%. Similar relationships were found in other studies compiled for comparison.(More)